Abstract:
A color luminance meter 1 is provided with a polychrometer 4 as a spectral optical system including a light receiving sensor array 43, a signal processing circuit 5 and an operation control unit 6. The operation control unit 6 carries out calculations to obtain characteristics of a measurement light based on a specified spectral responsitivity, using light reception signals and specified weighting coefficients. The spectral responsitivities of light receiving sensors constructing the light receiving sensor array 43 are selected such that B≧5 nm and A/B lies within a range of 1.5 to 4.0 when A, B denote the half power band width of the spectral responsitivities and a center wavelength interval of the spectral responsitivities. Accordingly, there can be provided a light measuring apparatus capable of maximally suppressing errors to highly precisely measure color luminance values and the like even in a measurement of a light lying in a narrow band such as a monochromatic light.
Abstract:
In general, an imaging system to synchronously record a spatial image and a spectral image of a portion of the spatial image is described. In some examples, a beam splitter of the imaging system splits an optical beam, obtained from a viewing device, into a first split beam directed by the imaging system to a spatial camera and a second split beam directed by the imaging system to the entrance slit of an imaging spectrograph that is coupled to a spectral camera. An electronic apparatus synchronously triggers the spatial camera and the spectral camera to synchronously record a spatial image and a spectral image, respectively.
Abstract:
An imaging housing includes: a housing that covers an imaging space; an imaging device attachment part that is provided on a first surface of the housing and to which an imaging device is attached; and a light source attachment part that is provided on a second surface intersecting the first surface of the housing and to which a first light source that irradiates an inside of the housing is attached, where the housing is provided with a diffusion member therein, and has a first opening facing a lens of the imaging device on the first surface, a second opening on the second surface, and a movable plate that changes an opening region of the second opening into which light of the first light source is incident, and the light source attachment part has a changing mechanism capable of changing a direction of the first light source in the opening region.
Abstract:
The present invention relates to a device for the discrimination of biological tissues, such that it is capable of carrying out the discrimination of tissue under complicated operating conditions, for example due to the presence of contaminating elements given off by a cutting operation, due to the presence of moisture in the biological tissue, or due to the presence of a non-controlled atmosphere that interferes with the results of the readings. The invention allows building more complex devices, including cutting instruments, such that it is possible to carry out a surgical intervention in a safe manner by preventing cutting into tissues that are to be avoided during said cutting operation.
Abstract:
The present invention relates to a device for the discrimination of biological tissues, such that it is capable of carrying out the discrimination of tissue under complicated operating conditions, for example due to the presence of contaminating elements given off by a cutting operation, due to the presence of moisture in the biological tissue, or due to the presence of a non-controlled atmosphere that interferes with the results of the readings. The invention allows building more complex devices, including cutting instruments, such that it is possible to carry out a surgical intervention in a safe manner by preventing cutting into tissues that are to be avoided during said cutting operation.
Abstract:
A detection apparatus, including: a laser configured to emit laser light towards an object to be detected; a Raman spectrometer configured to receive Raman light from the object; an imaging device configured to obtain an image of the object; a light sensor configured to receive light reflected and scattered by the object under irradiation of the laser light, and to determine the power of the received light; and a controller configured to control an operation of the detection apparatus based on the image obtained by the imaging device and the power determined by the light sensor. A detection method using the detection apparatus.
Abstract:
Snapshot spectral imagers comprise an imaging lens, a dispersed image sensor and a restricted isometry property (RIP) diffuser inserted in the optical path between the source image and the image sensor. The imagers are used to obtain a plurality of spectral images of the source object in different spectral bands in a single shot. In some embodiments, the RIP diffuser is one dimensional. An optional disperser may be added in the optical path, to provide further dispersion at the image sensor. In some embodiments, all imager components except the RIP diffuser may be part of a digital camera, with the RIP diffuser added externally. In some embodiments, the RIP diffuser may be included internally in a digital camera.
Abstract:
Snapshot spectral imagers comprise an imaging lens, a dispersed image sensor and a restricted isometry property (RIP) diffuser inserted in the optical path between the source image and the image sensor. The imagers are used to obtain a plurality of spectral images of the source object in different spectral bands in a single shot. In some embodiments, the RIP diffuser is one dimensional. An optional disperser may be added in the optical path, to provide further dispersion at the image sensor. In some embodiments, all imager components except the RIP diffuser may be part of a digital camera, with the RIP diffuser added externally. In some embodiments, the RIP diffuser may be included internally in a digital camera.
Abstract:
With a microspectroscopy device provided with an objective lens with a high numerical aperture, a defocus arises from thermal drift, etc., necessitating auto-focusing. Conventional auto-focus based on through-focus image acquisition takes time, and thus, it cannot be applied to continuous measurement over a long time wherein high-speed sampling is carried out. The present invention addresses this problem by having a defocus-sensing beam that has either defocus or astigmatism fall incident on the objective lens. Since how the image of the spot of the beam for defocus sensing blurs differs depending on the orientation of the defocus, real-time detection of the amount and orientation of defocus becomes possible, and high-speed realtime auto-focus becomes possible.
Abstract:
A method for simultaneous time delay integration (TDI) imaging using multiple channels of a multi-tap device, including: translating a field of view (FOV) over a sample to be imaged; optically aligning a direction of travel of the FOV to a direction of charge transfer for each tap of the multi-tap device; and reading out the image data from each channel using settings that are appropriate to a particular application.