Abstract:
Provided is an online detection method of gaseous alkali metal concentration in boiler burning flame. The method includes selecting the user characteristic spectral line to be measured; based on the characteristic spectral line of the alkali metal, constructing a fitting model between radiation strength of the characteristic spectral line of the alkali metal in the burning flame and the gaseous alkali metal concentration and flame temperature; calibrating the spectrograph under absolute radiation strength; measuring a flame object corresponding to an alkali metal concentration by the calibrated spectrograph to obtain the radiation strength and flame temperature of the characteristic spectral line of the alkali metal. The detection method can detect the concentration of the gaseous alkali metal in the burning flame of the detection furnace quickly and accurately as well as detect the content of the base metals, involves simple devices, low cost, and is suitable for field measurement.
Abstract:
In one embodiment, an imaging method may include receiving an intensity value of a first spectral channel associated with a pixel location. The intensity value of the first spectral channel may be based on electromagnetic radiation reflected from an object after being emitted from a narrow-band electromagnetic radiation source. The method may further include defining an intensity value of a second spectral channel based on the intensity value of the first spectral channel. The second spectral channel may be associated with a spectral region of electromagnetic radiation different from a spectral region of electromagnetic radiation associated with the first spectral channel. The method may also include associating the intensity value of the second spectral channel with the pixel location.
Abstract:
A handheld LIBS spectrometer system features an optics stage moveable with respect to a housing and including a laser focusing lens. A laser source is mounted in the housing for directing a laser beam to a sample via the laser focusing lens. A detection fiber is mounted in the housing and is fixed relative thereto. A first mirror is fixed relative to the housing and includes an aperture for the laser beam. This mirror is oriented to re-direct plasma radiation for delivery to the detection fiber. A controller subsystem is responsive to the output of a spectrometer subsystem and is configured to control the laser source and the optics stage.
Abstract:
A device (1) for analysing the material composition of an object (2) has a casing (3) with a handle (4), an operating trigger (5), a window (6) for abutment against the object to be analysed and a display (7) for displaying the analysis of the object. Mounted in the casing is a housing (11) having a base (12) to which it is pivotally connected about an axis (14) at one end (15). At the other end (16), a stepper motor (17) is provided for traversing the end across the base. This end has an opening (18) generally in alignment with an opening (19) in the housing in which the window is mounted. Within the housing, are mounted: a laser diode (21); a laser amplification crystal (22); a collimating lens (23); a laser focusing lens (24). The components are arranged on a laser projection axis (25), which passes out through the openings (18,19). A plane mirror (32) can receive light emitted by a plasma P excited at the surface of the object (2). Light from the plasma P is reflected in the direction (34) across the projection axis to a curved focusing mirror (35). From this mirror, the light is reflected again across the projection axis and focused on the end of an optical (fibre (37) set in an aperture (38) in the side wall (39) of the housing opposite from the reflecting mirror.
Abstract:
The invention concerns methods for measuring sulfur content in a fiber or polymer resin sample comprising: a) contacting the sample with a solution comprising sodium hydroxide to convert sulfur to sodium sulfate, b) combusting the sample of step a) in a furnace to remove essentially all organic materials to produce a residue; c) dissolving the residue in concentrated nitric acid; and d) determining the sulfur content of the sample using ICP Emission Spectrometry.
Abstract:
In one embodiment, an imaging method may include receiving an intensity value of a first spectral channel associated with a pixel location. The intensity value of the first spectral channel may be based on electromagnetic radiation reflected from an object after being emitted from a narrow-band electromagnetic radiation source. The method may further include defining an intensity value of a second spectral channel based on the intensity value of the first spectral channel. The second spectral channel may be associated with a spectral region of electromagnetic radiation different from a spectral region of electromagnetic radiation associated with the first spectral channel. The method may also include associating the intensity value of the second spectral channel with the pixel location.
Abstract:
A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.
Abstract:
An image pickup apparatus has a construction in which a diffraction element is provided in an observation optical system. Zero-order light that is transmitted straight through the diffraction element and one of the +1st-order diffracted light and the −1st-order diffracted light that is diffracted by the diffraction element are imaged onto an image pickup surface of an image pickup apparatus. The imaging areas of the zero-order light and one of the +1st-order diffracted light and the −1st-order diffracted light that is diffracted by the diffraction element do not overlap on the image pickup surface of the image pickup apparatus. With this construction, a small image pickup apparatus that provides a high-resolution spectral image and a color image of an object can be obtained.
Abstract:
A living body image pickup apparatus according to the present invention includes: a plurality of image pickup units which pick up images of body tissue and output the images of the body tissue as image pickup signals; a first spectroscopic unit which passes light in a first wavelength band, spectrally analyzes an image of the body tissue picked up by a first image pickup unit and thereby allows the image of the body tissue to be displayed on a display unit as a first image; and a second spectroscopic unit which passes light in a second wavelength band, spectrally analyzes an image of the body tissue picked up by a second image pickup unit and thereby allows the image of the body tissue to be displayed on the display unit as a second image in which predetermined part of the body tissue is enhanced compared to the first image.
Abstract:
A direct-view handheld binocular spectrometer for use in a variety of educational settings. The device comprises a holographic transmission diffraction grating and a uniquely curved quantitative wavelength scale for viewing visible-wavelength spectra with both eyes simultaneously. A variable width entrance slit, adjustable illumination for the wavelength scale, and attachable corrective lenses enhance the ease of use and efficiency as compared to traditional monocular spectrometers.