Abstract:
Continuous on-line thin film measurements employ a sensor having a spectrometer for interferometric measurements and a stack of single channel detectors for adsorption measurements. The stack is separated from the spectrometer, which analyzes radiation that emerges (transmitted pass or reflected from) the film, whereas the stack analyzes radiation that has passed through the film multiple times. The spectrometer is (i) positioned directly opposite the source of radiation so that it detects transmitted radiation or (ii) disposed on the same side of the film as is the source of radiation so that the spectrometer detects radiation that is specularly reflected from the film. The sensor includes a broadband radiation source emitting visible to far infrared light which propagates through a measurement cell defined by reflective surfaces exhibiting Lambertian-type scattering. The sensor is capable of measuring thin plastic films with thicknesses down to 1 micron or less.
Abstract:
A wrapper for a terahertz wave according to an embodiment of the present invention includes: a terahertz wave transmission layer that is made of a material that transmits a terahertz wave; and an electric field enhancement structure that enhances an electric field by reacting with a predetermined frequency band of terahertz waves passing through the terahertz wave transmission layer. An optical identification device for a terahertz wave according to an embodiment of the present invention includes m identification units composed of: a terahertz wave transmission layer that is made of a material that transmits a terahertz wave; and a waveguide grating that resonates at a natural resonant frequency when receiving the transmitted terahertz wave, in which the natural resonant frequency is any one of a first natural resonant frequency to an n-th natural resonant frequency.
Abstract:
An implantable diagnostic device in accordance with the present disclosure provides various benefits such as a compact size thereby allowing implanting of the device inside animate objects; low cost due to incorporation of inexpensive detection circuitry and the use of conventional IC fabrication techniques; re-usability by heating thereby allowing multiple diagnostic tests to be performed without discarding the device; and a configuration that allows performing of simultaneous and/or sequential diagnostic tests for detecting one or more similar or dissimilar target molecules concurrently or at different times.
Abstract:
A radiation driven light source comprises laser and focusing optics. These produce a beam of radiation focused on a plasma forming zone within a first container containing a gas (e.g. Xe). Collection optics collects photons emitted by a plasma maintained by the laser radiation to form a beam of output radiation. First container is enclosed within a hermetically sealed second container. Any ozone generated within the second container as a result of ultraviolet components of the output radiation is completely contained within the second container. Second container further filters out the ultraviolet components. Microwave radiation may be used instead of laser radiation to form the plasma.
Abstract:
A lighting device with expanded detection range includes a housing, which receives a seat to which a detector is mounted and has a circumference along which LEDs are mounted to mount therein, a lens being fit to an opening formed in a top of the housing corresponding to the seat so that a distal end of the lens is exposed outside the housing; a light shielding hood having a top end extending to the housing and connected to the lens and a bottom fixed to the seat to block entry of external lighting; and a reflector assembly including a reflector that condenses a signal source arranged on a top thereof and having inside and outside reflection surfaces and further including a fixing sleeve fixed to a bottom thereof to couple with the detector.
Abstract:
We describe a detection module useful with an apparatus and/or system for conducting luminescence assays, and a kit, a system, an apparatus, and a method incorporating the detection module.
Abstract:
A nucleic-acid-sequence determination device equipped with two light sources having different wavelengths, two detectors, and an optical system for irradiating a sample with light from the two light sources and guiding fluorescent light from a nucleic acid in the sample to the two detectors. The optical system is provided with a dichroic mirror for causing the fluorescent light from the nucleic acid in the sample to split, and guiding the split light to the two detectors. The dichroic mirror has a transition wavelength from transmission to reflection in two locations, namely: between light-emitting bands of two types of short-wavelength fluorescent dye and light-emitting bands of two types of long-wavelength fluorescent dye.
Abstract:
A flow apparatus for a spectrometer system includes a first optics element that is optically coupleable to a spectrometer and a second optics element that is optically coupleable to a light source. The first and second optics element may be arranged at a distance from one another in the region of a measurement gap through which a liquid can flow, in the region of which a light beam emerging from the second optics element and propagating into the first optics element is at least partly absorbable. A through-flow amount of the liquid through the measurement gap is controllable by changing the distance between the two optics elements, such that the spectrometer system can be used with various different samples.
Abstract:
A multipass spectroscopic absorption cell comprises at least a first reflector (40) and a second reflector (42) that are configured to reflect a beam of light multiple times through a sample volume (V). At least one of the first and second reflectors (40,42) defines a principal optical axis (A) that extends through the sample volume (V). An optical folding system (52) is located on the principal optical axis (A) between the first and second reflectors, said optical folding system being configured to fold the principal optical axis (A) through an angle greater than 0°.
Abstract:
A substrate for surface-enhanced Raman spectography includes a support including an upper surface; a multilayer deposited on the upper surface, with the multilayer including at least two metal layers separated from each other by an intermediate layer, the intermediate layer being selectively etchable with respect to the metal layers, the multilayer being passed through by at least one trench delimited by ends of each one of the layers of the multilayer, each end of each intermediate layer being set back with respect to the end of each metal layer adjacent to the intermediate layer in such a way that the ends of two successive metal layers form metal pins separated by a cavity; a reflective optical system arranged in each trench, with the reflective optical system being arranged to direct inside the cavities an incident light arriving according to an angle with respect to the upper surface of the support.