Abstract:
A method for producing a stable and reproducible electron gun emission and a system for producing high energy electrons, which includes an RF source and RF components including an electron gun that is powered by a DC power supply are provided. The inventive method and system are particularly advantageous for medical radiation treatment applications.
Abstract:
A capacitor includes a ferrite sleeve, which is placed on a first conductor and fitted into a surrounding tubular second conductor, which is being electrically grounded. The ferrite sleeve forms an inner plate of the capacitor and the second conductor forms an outer plate of the capacitor
Abstract:
High voltage high current regulator circuit for regulating current is interposed between first and second terminals connected to an external circuit and comprises at least one main-current carrying cold-cathode field emission electron tube conducting current between the first and second terminals. First and second grid-control cold-cathode field emission electron tubes provide control signals for first and second grids of the at least one main-current carrying cold-cathode field emission electron tube for positive and negative excursions of voltage on the first and second terminals, respectively. The current regulator circuit may be accompanied by a voltage-clamping circuit that includes at least one cold-cathode field emission electron tube. At least two cold-cathode field emission electron tubes, configured to operate at high voltage and high current, are preferably contained within a single vacuum enclosure and are interconnected to provide a circuit function, so as to form a high voltage high current vacuum integrated circuit.
Abstract:
Disclosed is a cascade voltage amplifier for producing an amplified output in pulse or continuous wave form comprises at least one non-final stage with an electron tube configured as a switching and Class A or C amplifying structure. A final stage comprises an electron tube configured as a Class A or C amplifying structure. The at least one non-final stage and the final stage are connected in series, and the amplified output has a voltage of at least 1000 volts. Further disclosed is a method of activating a plurality of cascaded electron tube stages within a common vacuum enclosure. Beneficially, a sufficient amount of energy supplied to the first stage serially propagates through any intervening stage to the final stage so as to facilitate activation of all tube stages.
Abstract:
A high-frequency, high-voltage electron switch includes an electron source, a steering mechanism, a mask or anode plate, and a target. The electron source produces a beam of electrons with a voltage of at least about 1 kV that impinges upon the anode plate. The steering mechanism scans the electron beam across the anode plate at a scanning frequency of at least about 10 MHz. A hole or aperture is provided in the anode plate that allows the electron beam to pass through and produce a pulsed, high-voltage current in the target with a very high-frequency repetition rate and a very fast rise time. The pulsed, high-voltage current produced in the target can be used to cause a high-voltage source to turn on and off.
Abstract:
Disclosed is a high voltage inverter for converting DC power to AC power with one or more AC output phases. The inverter has for each AC output phase an AC input phase circuit comprising first and second cold cathode field emission controllable electron tubes of triode, tetrode or pentode structure. Each electron tube has a first input node for connection to a high voltage DC potential in excess of 20 KV and a second input node for connection to ground. First electron tube is serially connected between a first end of a primary winding and ground, and second electron tube is serially connected between a second end of the primary winding and ground. Control circuitry controls the electron tubes so that the first and second electron tubes alternatively conduct so as to alternately bring the first and then second end of the primary winding approximately to the potential of ground.
Abstract:
The present disclosure includes field emission device embodiments. The present disclosure also includes method embodiments for forming field emitting devices. One device embodiment includes a housing defining an interior space including a lower portion and an upper portion, a cathode positioned in the lower portion of the housing, a elongate nanostructure coupled to the cathode, an anode positioned in the upper portion of the housing, and a control grid positioned between the elongate nanostructure and the anode to control electron flow between the anode and the elongate nanostructure.
Abstract:
An electron tube includes cylindrical electrodes which are mounted coaxially. The electrodes include a cathode surrounded by a grid, with the cathode and the grid defining an input resonant cavity having an active zone. The cavity extends on both sides of the active zone. The central part of the active zone is located at a point where the voltage reaches a maximum. The resonant input cavity is folded back on itself so that both ends of the cavity are at the base of the tube.
Abstract:
An electron tube, for example, a transmitter tube of the triode type, comprising in an evacuated envelope a mesh or cage cathode (3) and an anode (1). By providing a control electrode (4) near the cathode (3) on the side thereof remote from the anode (1), the output power of the tube can be controlled by means of a potential difference between the control electrode (4) and the cathode (3).
Abstract:
A resonant circuit arrangement for anode resonant circuits in radio frequency output amplifiers. A transmitter tube is formed with a cylindrical grid electrode and, coaxial therewith, a hollow cylindrical anode member encircling the grid electrode. A first circular metal disk extends perpendicularly from the grid electrode beyond the anode member. A second circular metal disk, with a smaller external diameter than the first, extends perpendicularly from the outer surface of the anode member. A hollow metal cylinder extends from the peripheral edge of the first circular metal disk past the second circular metal disk. A third circular metal disk extends from the hollow metal cylinder parallel with the first and second circular metal disks and on the side of the second disk opposite the first disk. A fourth circular metal disk is positioned between and parallel to the third and fourth disks. The fourth disk has an external diameter less than that of the first and third disks, and the third and fourth disks have internal diameters greater than the external diameter of the hollow cylindrical anode electrode. A cylindrical metal wall interconnects the internal edges of the third and fourth metal disks. A plurality of isolating capacitors are coupled between the outer edges of the second and third disks and so are electrically coupled to the cylindrical grid electrode.