Abstract:
A defect inspection apparatus includes an illumination optical unit for obliquely illuminating an object with a slit-like shaped laser, a first detection optical unit for detecting a first image formed by light reflected from the object by the illumination of the slit-like shaped laser and reflected in a first direction substantially normal to a surface of the object, a second detection optical unit for detecting a second image formed by light reflected from the object by the illumination of the slit-like shaped laser and reflected in a second direction inclined to the normal direction to the surface of the object, an image signal processing unit which processes a signal outputted from the first detection optical unit and a signal outputted from the second detection optical unit, and an output unit which outputs information processed by the image signal processing unit.
Abstract:
An apparatus and method for detecting defects on a specimen includes an illumination optical unit which obliquely projects a laser onto a region which is longer in one direction on a surface of a specimen than in a transverse direction, a table unit which mounts the specimen and which is movable, a detection optical unit which detects light from the specimen illuminated by the laser with an image sensor while the table is moving, and a signal processor. The signal processor processes a signal outputted from the image sensor of the detection optical unit and converted to a digital signal and extracts defects of the specimen by comparing the converted digital signal with a reference digital signal. A display unit displays information of defects extracted by the signal processor.
Abstract:
A processing method for semiconductor devices in a semiconductor fabrication line includes processing a substrate in a first processing apparatus, transferring the substrate processed in the first processing apparatus to a detecting apparatus without removal of the substrate from the semiconductor fabrication line while continuing fabrication of the semiconductor devices, detecting foreign particle defects on the substrate transferred to the detecting apparatus, and determining a foreign particle generation condition of the processing apparatus based on a data from the detecting.
Abstract:
The present invention provides a defect inspecting apparatus and a defect inspection method for inspecting an object of inspection for a defect such as a foreign particle existing on the object wherein, by using a high-efficiency illumination optical system for radiating an illumination beam to the object of inspection from a direction to reduce the intensity of a scattered light generated by a pattern on the object of inspection, it is possible to decrease the intensity of the scattered light from the pattern which causes a variation of a signal and, in addition, by using a means for setting a detection threshold value based on a variation of a signal computed for each area in a chip on the object of inspection, the detection threshold value can be made small and, thus, the sensitivity as well as the throughput can be raised.
Abstract:
A method and system for studying the effect of electron-electron interaction in an electron beam writing system. First and second test reticles are provided that have different open areas. An electron beam is directed through the first test reticle to form a first pattern on a test surface, and the electron beam is then directed through the second test reticle to form a second pattern on a test surface. Because the open areas of the test reticles differ, the current of the electron beam is different when that beam passes through the first test reticle than when that beam passes through the second test reticle. The resolution of the first formed pattern is compared with the resolution of the second formed pattern to assess the effect of the different currents of the electron beam on the resolutions of the formed patterns.
Abstract:
A resolution standard for a scanning electron microscope has clusters of palladium in a sea urchin form. The clusters are widely scattered on a substrate so that a cluster can be acquired easily for a resolution test. The tips of the spines on the clusters are on the order of 50 Angstroms and they present a sharp clear image to an electron microscope that is operating properly. A process for forming the clusters is also disclosed.
Abstract:
An edge ring for use in a plasma processing chamber with a chuck is provided. An edge ring body has a first surface to be placed over and facing the chuck, wherein the first surface forms a ring around an aperture. A first elastomer ring is integrated to the first surface and extending around the aperture.
Abstract:
Embodiments include a real time etch rate sensor and methods of for using a real time etch rate sensor. In an embodiment, the real time etch rate sensor includes a resonant system and a conductive housing. The resonant system may include a resonating body, a first electrode formed over a first surface of the resonating body, a second electrode formed over a second surface of the resonating body, and a sacrificial layer formed over the first electrode. In an embodiment, at least a portion of the first electrode is not covered by the sacrificial layer. In an embodiment, the conductive housing may secure the resonant system. Additionally, the conductive housing contacts the first electrode, and at least a portion of an interior edge of the conductive housing may be spaced away from the sacrificial layer.
Abstract:
An apparatus includes at least one electron beam generator for generating accelerated electrons with which bulk material particles are impingeable during free fall. The electron beam generator has an annular design in which the electrons are emitted and accelerated by an annular cathode. The electrons exit from an electron outlet window in the direction of the ring axis. The annular electron beam generator is arranged in such a way that the ring axis of the electron beam generator is oriented perpendicular to, or at an angle of up to 45° from the horizontal. The apparatus may further include a device for separating bulk material particles arranged above the annular electron beam generator, the bottom wall of said device having at least one opening out of which the bulk material particles fall and, from there, fall through the ring which is formed by the electron beam generator.
Abstract:
In a method of manufacturing a semiconductor device, a semiconductor substrate is prepared. Boron-containing ions are generated by reacting a borane-based compound and a halogen-containing source with each other. The borane-based compound includes boron having a mass number of 11 (11B). The boron-containing ions are implanted into the semiconductor substrate to form an impurity region.