Abstract:
An electron beam apparatus has the electron optical column for releasing an electron beam from the front-end portion after the beam is emitted from an electron beam source located on a rear-end portion of the column, a specimen chamber connected to a front-end portion of the column, and an aperture member withdrawably disposed in the front-end portion of the column within the specimen chamber. The apparatus further includes a rotating mechanism for rotating the aperture member along a given plane lying along the direction of a path of the beam. Thus, the aperture member can be attached and detached to and from the front-end portion of the column.
Abstract:
Techniques for improving extracted ion beam quality using high-transparency electrodes are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation. The apparatus may comprise an ion source for generating an ion beam, wherein the ion source comprises a faceplate with an aperture for the ion beam to travel therethrough. The apparatus may also comprise a set of extraction electrodes comprising at least a suppression electrode and a high-transparency ground electrode, wherein the set of extraction electrodes may extract the ion beam from the ion source via the faceplate, and wherein the high-transparency ground electrode may be configured to optimize gas conductance between the suppression electrode and the high-transparency ground electrode for improved extracted ion beam quality.
Abstract:
A shielding assembly for use in a semiconductor manufacturing apparatus, such as an ion implantation apparatus, includes one or more removable shielding members configured to cover inner surfaces of a mass analyzing chamber. The shielding assembly reduces process by-products from accumulating on the inner surfaces. In one embodiment, a shielding assembly includes first and second shielding members, each having a unitary construction and configured to cover a magnetic area in the mass analyzing chamber. The shielding members desirably are made entirely of graphite or impregnated graphite to minimize contamination of the semiconductor device being processed caused by metal particles eroded from the inner surfaces of the mass analyzing chamber.
Abstract:
In an ion implanting apparatus 10 including a separation slit 20 which receives an ion beam 1 having passed through a mass-separation electromagnet 17 and allows a desired type of ion to selectively pass therethrough, the separation slit 20 is operable to vary a shape of a gap through which the ion beam 1 passes. In addition, the ion implanting apparatus 10 includes a variable slit 30 which is disposed between an extraction electrode system 15 and the mass-separation electromagnet 17 so as to form a gap through which the ion beam 1 passes and is operable to vary a shape of the gap so as to shield a part of the ion beam 1 extracted from the ion source 12. The ion implanting apparatus 10 may include both or one of the separation slit 20 and the variable slit 30.
Abstract:
An ion implanting apparatus is provided, which prevents a failure of the processing object caused by a scattering of the deposited particles of the ion species on an inner surface of a through hole of a member that forms a beam geometry of an ion beam. Since at least an inner surface of the through hole 222 of the member 220 having a through hole and being capable of forming a beam geometry is coated with a thermal spraying film, unwanted deposition of the ion species on the inner surface of the through hole 222 is inhibited. Moreover, since a deposition film generated on the surface of the thermal spraying film has an unoriented poly-crystalline structure that exhibits extremely higher inter-layer adhesiveness, a failure of the processing object caused by a scattering of the particles peeled-off from the deposition layer is prevented.
Abstract:
A beam blanking unit (1) comprises first and second blanking plates (2, 3) mounted to a support plate (15). A stopper (4) is mechanically and electrically connected to the first blanking plate (2).
Abstract:
This VSB lithography system includes a first, second and third aperture for forming a single electron beam in each of the rectangular opening portion that are provided, and draws a figure pattern using the single electron beam formed by passing the beam through the first, second and third aperture in sequence. Each of the first, second and third aperture has a mechanism for rotationally driving the aperture around an optical axis up to an arbitrary angle from 0 to 360°. Further, in the third aperture, a mechanism for varying the opening slit width of the rectangular opening portion is provided.
Abstract:
The present invention provides a substrate processing apparatus capable of suppressing mutual contamination and/or damage of the insides of ion beam generators arranged opposite each other via a substrate, and a magnetic recording medium manufacturing method. A substrate processing apparatus according to an embodiment of the present invention includes a first ion beam generator that applies an ion beam to one surface to be processed of a substrate W, and a second ion beam generator that applies an ion beam to another surface to be processed, which are arranged opposite each other via the substrate W, and an area of a first grid in the first ion beam generator, and an area of a second grid in the second ion beam generator, each area corresponding to an opening of the substrate W, are occluded.
Abstract:
One embodiment of this fastening apparatus comprises a cap with a passage through the length of the cap. This cap is received by the upper panels of a body. The embodiments of this fastening apparatus may have two or more upper panels that form a recess. The body also has a lower region with a passage. The upper panels are flexible and can translate to retain the cap within the recess. A threaded member is disposed in the passage of the body. This cap may be fabricated of graphite in one instance.
Abstract:
A scanning electron microscope is provided. The scanning electron microscope includes an electron beam source generating a primary electron beam, a condenser lens converging the primary electron beam, a base plate with a diamond film formed on the surface thereof having an aperture for passing of the primary electron beam, and a scanning unit two-dimensionally scanning a specimen with the primary electron beam.