Abstract:
A deposition system is disclosed that allows for growth of inclined c-axis piezoelectric material structures. The system integrates various sputtering modules to yield high quality films and is designed to optimize throughput lending it to a high-volume in manufacturing environment. The system includes two or more process modules including an off-axis module constructed to deposit material at an inclined c-axis and a longitudinal module constructed to deposit material at normal incidence; a central wafer transfer unit including a load lock, a vacuum chamber, and a robot disposed within the vacuum chamber and constructed to transfer a wafer substrate between the central wafer transfer unit and the two or more process modules; and a control unit operatively connected to the robot.
Abstract:
The present invention provides an apparatus of electron beam comprising an electron gun with a pinnacle limiting plate having at least one current-limiting aperture. The pinnacle limiting plate is located between a bottom (or lowest) anode and a top (or highest) condenser within the electron gun. A current (ampere) of the electron beam that has passed through the current-limiting aperture remains the same (unchanged) after the electron beam travels through the top condenser and an electron optical column and arrives at a sample space. Electron-electron interaction of the electron beam is thus reduced.
Abstract:
Embodiments consistent with the disclosure herein include methods and a multi-beam apparatus configured to emit charged-particle beams for imaging a top and side of a structure of a sample, including: a deflector array including a first deflector and configured to receive a first charged-particle beam and a second charged-particle beam; a blocking plate configured to block one of the first charged-particle beam and the second charged-particle beam; and a controller having circuitry and configured to change the configuration of the apparatus to transition between a first mode and a second mode. In the first mode, the deflector array directs the second charged-particle beam to the top of the structure, and the blocking plate blocks the first charged-particle beam. And in the second mode, the first deflector deflects the first charged-particle beam to the side of the structure, and the blocking plate blocks the second charged-particle beam.
Abstract:
A method of performing spectroscopy in a Transmission Charged-Particle Microscope comprising: a specimen holder; a source, for producing a beam of charged particles; an illuminator, for directing said beam so as to irradiate the specimen; an imaging system, for directing a flux of charged particles transmitted through the specimen onto a spectroscopic apparatus comprising a dispersing device for dispersing said flux into an energy-resolved array of spectral sub-beams, the method comprising: using an adjustable aperture device to admit a first portion of said array to a detector, while blocking a second portion of said array; providing; using a radiation sensor in said flux upstream of said aperture device to perform localized radiation sensing in a selected region of said second portion of the array, simultaneous with detection of said first portion by said detector; using a sensing result from said sensor to adjust a detection result from said detector.
Abstract:
Embodiments of the invention relate to a mass resolving aperture that may be used in an ion implantation system that selectively exclude ion species based on charge to mass ratio (and/or mass to charge ratio) that are not desired for implantation, in an ion beam assembly. Embodiments of the invention relate to a mass resolving aperture that is segmented, adjustable, and/or presents a curved surface to the oncoming ion species that will strike the aperture. Embodiments of the invention also relate to the filtering of a flow of charged particles through a closed plasma channel (CPC) superconductor, or boson energy transmission system.
Abstract:
Embodiments of the invention relate to a mass resolving aperture that may be used in an ion implantation system that selectively exclude ion species based on charge to mass ratio (and/or mass to charge ratio) that are not desired for implantation, in an ion beam assembly. Embodiments of the invention relate to a mass resolving aperture that is segmented, adjustable, and/or presents a curved surface to the oncoming ion species that will strike the aperture. Embodiments of the invention also relate to the filtering of a flow of charged particles through a closed plasma channel (CPC) superconductor, or boson energy transmission system.
Abstract:
A beam current adjuster for an ion implanter includes a variable aperture device which is disposed at an ion beam focus point or a vicinity thereof. The variable aperture device is configured to adjust an ion beam width in a direction perpendicular to an ion beam focusing direction at the focus point in order to control an implanting beam current. The variable aperture device may be disposed immediately downstream of a mass analysis slit. The beam current adjuster may be provided with a high energy ion implanter including a high energy multistage linear acceleration unit.
Abstract:
A scanning transmission electron microscope according to the present invention includes an electron lens system having a small spherical aberration coefficient for enabling three-dimensional observation of a 0.1 nm atomic size structure. The scanning transmission electron microscope according to the present invention also includes an aperture capable of changing an illumination angle; an illumination electron lens system capable of changing the probe size of an electron beam probe and the illumination angle; a secondary electron detector (9); a transmission electron detector (13); a forward scattered electron beam detector (12); a focusing unit (16); an image processor for identifying image contrast; an image processor for computing image sharpness; a processor for three-dimensional reconstruction of an image; and a mixer (18) for mixing a secondary electron signal and a specimen forward scattered electron signal.
Abstract:
A wafer having a plurality of elements closely arranged thereon is irradiated with an ion beam while being conveyed in one direction by a conveying unit. Each of shutters adjusts an irradiation time during which a target area of the wafer is irradiated with the ion beam. Thus, a frequency in the target area is adjusted. Each of a plurality of mask holes in a pattern mask disposed between the wafer and the shutters corresponds to one area of the wafer. The mask holes are alternately displaced in a wafer conveying direction in which the wafer is conveyed, and are arranged in a plurality of columns perpendicular to the wafer conveying direction. To individually open and close the mask holes, the shutters are arranged to correspond to the respective mask holes. Thus, frequency adjustment, for areas in one column perpendicular to the wafer conveying direction, is performed in multiple steps.
Abstract:
One embodiment relates to an electron-beam apparatus for defect inspection and/or review of substrates or for measuring critical dimensions of features on substrates. The apparatus includes an electron gun and an electron column. The electron gun includes an electron source configured to generate electrons for an electron beam and an adjustable beam-limiting aperture which is configured to select and use one aperture size from a range of aperture sizes. Another embodiment relates to providing an electron beam in an apparatus. Advantageously, the disclosed apparatus and methods reduce spot blur while maintaining a high beam current so as to obtain both high sensitivity and high throughput.