Abstract:
A circuit board comprises a resin-filled plated (RFP) through-hole; a dielectric layer over the RFP through-hole; a substantially circular RFP cap in the dielectric layer and connected to an upper opening of the RFP through-hole; a via stack in the dielectric layer; and a plurality of via lands extending radially outward from the via stack, wherein each of the plurality of via lands is diametrically larger than the RFP cap. Preferably, the RFP cap comprises a diameter of at least 300 μm. Preferably, each of the via lands comprises a substantially circular shape having a diameter of at least 400 μm. Moreover, the circuit board further comprises a ball grid array pad connected to the via stack; and input/output ball grid array pads connected to the ball grid array pad. Additionally, the circuit board further comprises metal planes in the dielectric layer.
Abstract:
A metalized circuit suitable for application as a radio frequency antenna is produced by forming an antenna coil pattern on a flexible substrate. The antenna coil pattern is formed using a conductive ink which is patterned on the substrate. The conductive ink is cured and an electrical-short layer is formed across the coils of the conductive ink pattern. An insulating layer is formed over top of the electrical-short layer, a metal layer electroplated on top of the conductive layer, and then the electrical-short layer is removed. The use of the electrical-short layer during the electroplating allows for the voltage at the different points on the conductive ink layer to be relatively similar, so that a uniform electroplate layer is formed on top of the conductive ink layer. This results in a better quality radio frequency antenna at a reduced cost.
Abstract:
A process for preparing an electronic package comprising: (a) providing a ceramic housing defining an internal cavity for receiving a micro device and having one or more interface portions; (b) treating the housing to form a tungsten layer on the interface portions; and (c) overlaying a palladium layer on the tungsten layer.
Abstract:
An LTCC module includes an LTCC substrate and a pad part formed on an undersurface of the LTCC substrate for mounting the LTCC substrate to an external substrate. The pad part includes a metal pad layer formed on an undersurface of the LTCC substrate and a solder layer formed on an undersurface of the metal pad layer.
Abstract:
A wired circuit board and a producing method thereof are provided which can precisely form an insulating layer and reduce transmission loss with a simple layer structure and also features excellent long-term reliability by preventing the occurrence of an ion migration phenomenon between a ground layer and a positioning mark layer, and the insulating layer to improve the adhesion therebetween and the conductivity of a conductor. A metal supporting board is prepared and a first metal thin film is formed on the metal supporting board. A resist is formed in a pattern and a ground layer and a positioning mark layer are formed on the first metal thin film exposed from the resist at the same time. A second metal thin film is formed over the ground layer and the positioning mark layer, then the resist is removed. An insulating base layer is formed on the first metal thin film including the upper surface of the second metal thin film, thereafter, a conductive pattern is formed on the insulating base layer.
Abstract:
A thin-film device comprises a substrate and a capacitor provided on the substrate. The capacitor incorporates: a lower conductor layer disposed on the substrate; a dielectric film disposed on the lower conductor layer; and an upper conductor layer disposed on the dielectric film. The thickness of the dielectric film falls within a range of 0.02 to 1 μm inclusive and is smaller than the thickness of the lower conductor layer. The surface roughness in maximum height of the top surface of the lower conductor layer is equal to or smaller than the thickness of the dielectric film.
Abstract:
A method of forming an electrically-conductive pattern includes selectively electroplating the top portions of a substrate that corresponds to the pattern, and separating the conductive pattern from the substrate. The electroplating may also include electrically connecting the conductive pattern to an electrical component. Conductive ink, such as ink including carbon particles, may be selectively placed on the conductive substrate to facilitate plating of the desired pattern and/or to facilitate separation of the pattern from the substrate. An example of a conductive pattern is an antenna for a radio-frequency identification (RFID) device such as a label or a tag. One example of an electrical component that may be electrically connected to the antenna, is an RFID strap or chip.
Abstract:
A method for producing a ceramic substrate which employs a cofiring process using restraint sheets in which a second ceramic green sheet 7 is laminated on a green ceramic substrate 30 so as to cover surface conductors 32 of the green ceramic substrate 30, the second ceramic green sheet 7 subsequently being integrated with the green ceramic substrate 30. Restraint sheets 9, which are not sintered at a sintering temperature at which the green ceramic substrate 30 is sintered, are laminated on corresponding opposite sides of the green ceramic substrate 30 so as to restrain the green ceramic substrate 30 together with the second ceramic green sheet 7. The second ceramic green sheet 7 and the green ceramic substrate 30 are fired at a temperature at which the second ceramic green sheet 7 and the green ceramic substrate 30 are integrally sintered, whereas the restraint sheets 9 are not sintered, to thereby yield a ceramic substrate 40. The restraint sheets 9 and a ceramic covering layer 7a which covers the surface conductors 32 are removed, to thereby expose the surface conductor layer 32. A plating layer 31 is formed on the surface conductor layer 32.
Abstract:
A method of making a printed circuit board in which conductive thru-holes are formed within two dielectric layers of the board's structure so as to connect designated conductive layers. One hole connects two adjacent layers and the other connects two adjacent layers, including one of the conductive layers connected by the other hole. It is also possible to connect all three conductive layers using one or more holes. The resulting holes may be filled, e.g., with metal plating, or conductive or non-conductive paste. In the case of the latter, it is also possible to provide a top covering conductive layer over the paste, e.g., to serve as a pad or the like on the board's external surface.
Abstract:
A wiring board provided with a resistor comprises: an insulating substrate having a surface; wiring patterns formed on the surface, the wiring patterns including first and second electrodes spaced from each other by a certain distance; a first resistor (horizontal type resistor) formed on the surface, the first resistor having respective ends connected with the first and second electrodes, respectively; the wiring patterns further including a third electrode, occupying a first plane area on the surface; a second resistor (vertical type resistor) formed on the third electrode; a fourth electrode formed on the second resistor; and the second resistor and the fourth electrode being located in a second plane area within the first plane area.