Abstract:
A semiconductor package and a fabrication method thereof are disclosed, whereby an environmental problem is solved by using external connection terminals or semiconductor element-mounting terminals containing a smaller amount of lead, while at the same time achieving a fine pitch of the terminals. The semiconductor package includes a board (20) including a plurality of insulating resin layers, semiconductor element-mounting terminals (18) formed on the uppermost surface of the board, and external connection terminals (12) formed on the bottom surface thereof. Each external connection terminal (12) is formed as a bump projected downward from the bottom surface of the package, and each bump is filled with the insulating resin (14) while the surface thereof is covered by a metal (16). Wiring (24), (26) including a conductor via (26a) electrically connect the metal of the metal layer 16 and the semiconductor element-mounting terminals (18).
Abstract:
It is an object of the present invention to provide a multilayer circuit board, and a method for manufacturing the same, in which a plurality of circuit boards are layered, wherein as regards at least one circuit board positioned on an outer side, a conductive substance is filled into holes passing through the circuit board in the thickness direction and cured, and the wiring layers of the plurality of circuit boards are electrically connected by the conductive substance that has been cured, wherein in the multilayer circuit board, the wiring layer positioned outside the conductive substance that has been cured projects outward from its surroundings. Thus, the conductive paste is sufficiently compressed during hot pressing to yield a stable electrical connection, and thermosetting resin can be filled in between the inner layer wiring pattern without leaving gaps.
Abstract:
Disclosed is an article comprising first areas of electrically conductive material and second areas of electrically conductive material raised relative to the first areas and substantially electrically isolated from the first areas, said conductive materials exhibiting a resistivity that averages less than 800 ohm/square.
Abstract:
The present invention relates to a nonwoven substrate, and specifically to a nonwoven substrate imparted with a three-dimensional image, wherein the three-dimensional nonwoven substrate is particularly suited as a support substrate for a PCB (Printed Circuit Board) and similar application.By the utilization of a hydroentangled, three-dimensionally imaged support substrate impregnated with a durable resinous matrix, PCB's, and similar applications, can be imparted with unique and useful performance properties, to improve structural performance.
Abstract:
A flip-chip package for implementing a fine solder ball, and a flip-chip packaging method using the same. The flip-chip package includes a first wafer having a first electrode and a first under bump metal (UBM) formed on the first electrode and electrically connected to the first electrode; and second wafer opposing the first wafer and having a second electrode located in a position corresponding to the first electrode, and a second UBM formed on the second electrode and electrically connected to the second electrode. The first wafer has a depression formed on one or more areas adjacent to the first UBM, which depression partly receives a solder ball that connects the first and the second UBMs upon flip-chip bonding of the first and second wafers. Since the UBM is formed as an embossing pattern, a fine solder ball can be implemented. Additionally, the reliability of the package can be improved.
Abstract:
Method for screen printing a continuous structure on a substrate wherein the screen printed structure extends from at least a first level to at least a second level. The disclosed method is particularly suitable for the fabrication of microelectronic devices and components thereof including the fabrication of field emission display devices. Preferably, a print screen of a preferred thickness having a preconfigured print pattern formed therethrough, in combination with a squeegee having a hardness within a preferred range, are used to force a screen printable substance onto a substrate while maintaining a portion of the print screen within a preferred reference angle. The resulting screen printed structure extends from at least one lower level to at least one upper level in a continuous “uphill” manner.
Abstract:
A device including a chip, and a resin package sealing the chip, the resin package having resin projections located on a mount-side surface of the resin package. Metallic films are respectively provided to the resin projections. Connecting parts electrically connect electrode pads of the chip and the metallic film.
Abstract:
The invention relates to an intermediate support for electronic components, for example a semiconductor, comprising a plastic substrate with contact bumps (2) in one-piece, covered with a metallic layer, which is electrically connected to at least one conducting path of said substrate (1). Said contact bumps (2) each comprise a well wettable path, extending from the tips to the base thereof and each leading to the corresponding contact bump (2) base in a solder receiving region with suction (11). Therefore, by soldering said contact bumps, excess solder can be sucked off, such that short circuits can be avoided even without the use of a solder resist. By solder contacting said intermediate support, the solder can thus be applied over a large surface on a circuit support and sucked off the cavities between the contact points by reflow soldering.
Abstract:
A device including a chip, and a resin package sealing the chip, the resin package having resin projections located on a mount-side surface of the resin package. Metallic films are respectively provided to the resin projections. Connecting parts electrically connect electrode pads of the chip and the metallic film.
Abstract:
Method for screen printing a continuous structure on a substrate wherein the screen printed structure extends from at least a first level to at least a second level. The disclosed method is particularly suitable for the fabrication of microelectronic devices and components thereof including the fabrication of field emission display devices. Preferably, a print screen of a preferred thickness having a preconfigured print pattern formed therethrough, in combination with a squeegee having a hardness within a preferred range, are used to force a screen printable substance onto a substrate while maintaining a portion of the print screen within a preferred reference angle. The resulting screen printed structure extends from at least one lower level to at least one upper level in a continuous “uphill” manner. The disclosed method is particularly suitable for forming continuous electrically conductive structures or circuit traces extending from a lower level of a substrate, such as an anode plate of an FED device, up onto at least one second surface vertically distanced from the substrate. The electrically conductive structure may optionally terminate into a specifically configured contact pad for accommodating complementary contacting structures located on a mating component, such as a cathode plate of an FED device.