Abstract:
A multi-layer printed circuit board on which insulation resin layers and circuit pattern layers are alternatively stacked to form multiple layers, including: an insulation resin layer; a circuit pattern formed at the upper surface of the insulation resin layer; a blind via hole formed penetrating the insulation resin layer and the circuit pattern; a plated layer formed at the upper surface of the circuit pattern, at the inner wall face and the bottom of the blind via hole; an inner lead bump pad formed at the surface of the plated layer which is exposed to the lower surface of the insulation resin layer; and an outer lead bump pad formed on the circuit pattern which is formed at the upper surface of the insulation resin layer, whereby the problem of defective attachment of a bump due to a void present in a blind via hole is eliminated.
Abstract:
A solder resist comprising a thermosetting resin is printed on a surface of an insulating board (7) having a conductor circuit (6). The solder resist is then heat-cured to form an insulating film (1) having a low thermal expansion coefficient. A laser beam (2) is then applied to the portion of the insulating film in which an opening is to be formed, to burn off the same portion for forming an opening (10), whereby the conductor circuit (6) is exposed. This opening may be formed as a hole for conduction by forming a metal plating film on an inner surface thereof. It is preferable that an external connecting pad be formed so as to cover the opening. The film of coating of a metal is formed by using an electric plating lead, which is preferably cut off by a laser beam after the electric plating has finished.
Abstract:
A solder resist comprising a thermosetting resin is printed on a surface of an insulating board (7) having a conductor circuit (6). The solder resist is then heat-cured to form an insulating film (1) having a low thermal expansion coefficient. A laser beam (2) is then applied to the portion of the insulating film in which an opening is to be formed, to burn off the same portion for forming an opening (10), whereby the conductor circuit (6) is exposed. This opening may be formed as a hole for conduction by forming a metal plating film on an inner surface thereof. It is preferable that an external connecting pad be formed so as to cover the opening. The film of coating of a metal is formed by using an electric plating lead, which is preferably cut off by a laser beam after the electric plating has finished.
Abstract:
A process for fabricating and releasing a thin-film structure from a primary carrier for further processing. The thin-film structure is built on a metal interconnect disposed on a dielectric layer which, in turn, is deposited on a primary carrier. The thin-film structure and metal interconnect are released from the dielectric layer and primary carrier along a release interface defined between the metal interconnect and the dielectric film. Release is accomplished by disturbing the interface, either by laser ablation or dicing. The process of the present invention has at least three, specific applications: (1) the thin-film structure and metal interconnect can be released to yield a free-standing film; (2) the thin-film structure and metal interconnect can be laminated onto a permanent substrate (when building top-side down structures) and then released; and (3) the thin-film structure can be transferred to a secondary temporary carrier (when building top-side up structures) for further processing and testing, then transferred to a permanent substrate before releasing the thin-film structure and metal interconnect.
Abstract:
A self-supporting redistribution structure for directly mounting a semi-conductor chip to a multilayer electronic substrate is separately fabricated and then laminated to the multilayer substrate. The redistribution structure comprises a dielectric layer having plated vias communicating between its two major surfaces, redistribution lines and input/output pads on its upper major surface and joining patterns on its lower margin surface for electrical connection with the multilayer substrate. The metal plating in the plated vias of the redistribution device connects respective input/output pads on the upper surface of the redistribution structures with the joining patterns on its lower major surface. Input/output pads define an even (planar) topography with the redistribution lines to facilitate flip chip joining.
Abstract:
The present disclosure provides a printed circuit board and a wire arrangement method thereof. The printed circuit board includes a packaged chip and at least two connectors, wires of the packaged chip that are connected to different connectors are distributed on different board layers; and when the packaged chip is connected to one of the connectors, a via is backdrilled to form a high-speed path from the packaged chip to the connector, and copper walls of board layers corresponding to other connectors are drilled out. The wires of the packaged chip that are connected to different connectors are distributed on different board layers. When the packaged chip is connected to one of the connectors, according to backdrilling of different depths, the via is backdrilled to form a high-speed path from the packaged chip to the connector, and copper walls of board layers corresponding to other connectors are drilled out.
Abstract:
A fibrillated liquid crystal polymer powder containing fibrillated liquid crystal polymer particles. A paste containing a dispersion medium and the fibrillated liquid crystal polymer powder. A method of producing the fibrillated liquid crystal polymer powder. A resin multilayer substrate obtained by laminating a plurality of resin sheets including at least one layer of a liquid crystal polymer sheet. On a surface of at least one layer of the liquid crystal polymer sheet, a thickness adjustment layer made of a fibrillated liquid crystal polymer powder containing fibrillated liquid crystal polymer particles is provided in a region insufficient in thickness when at least the plurality of resin sheets are laminated.
Abstract:
Before a laminated body is subjected to hot pressing, at least two or more land electrodes are displaced from each other as viewed in the lamination direction, whereby at least two or more gaps disposed in the lamination direction are displaced from each other as viewed in the lamination direction. The hot pressing on the laminated body causes resin materials that compose resin films to flow and fill the gaps in the laminated body. Consequently, the planarity of a multilayer substrate can be improved to a greater extent than in a case where a plurality of gaps disposed in the lamination direction is located at the same position as viewed in the lamination direction.
Abstract:
A semiconductor substrate includes: 1) a first dielectric structure having a first surface and a second surface opposite the first surface; 2) a second dielectric structure having a third surface and a fourth surface opposite the third surface, wherein the fourth surface faces the first surface, the second dielectric structure defining a through hole extending from the third surface to the fourth surface, wherein a cavity is defined by the through hole and the first dielectric structure; 3) a first patterned conductive layer, disposed on the first surface of the first dielectric structure; and 4) a second patterned conductive layer, disposed on the second surface of the first dielectric structure and including at least one conductive trace. The first dielectric structure defines at least one opening to expose a portion of the second patterned conductive layer.