Abstract:
The present invention relates generally to the field of sequential surface chemistry. More specifically, it relates to products and methods for manufacturing products using Atomic Layer Deposition (“ALD”) to depose one or more materials onto a surface. ALD has the capability for high-quality defect free film deposition with few molecular layers. The present invention includes, in varying embodiments, methods of manufacturing electric components such as batteries, capacitors and electrochemical capacitors by ALD, and the products manufactured by those methods.
Abstract:
A multi-layered circuit board is provided having a buried capacitive layer and a device-specific embedded, localized, non-discrete, and distributive capacitive element. A printed circuit board is provided including (1) a first dielectric layer, (2) a first conductive layer coupled to a first surface of the first dielectric layer, (3) a second conductive layer coupled to a second surface of the first dielectric layer, and (4) a localized distributive non-discrete capacitive element adjacent the first conductive layer, wherein the capacitive element occupies a region that approximately coincides with a location over which a device to be coupled to the capacitive element is to be mounted. The embedded, localized, non-discrete, and distributive capacitive element may provide device-specific capacitance to suppress voltage/current noise for a particular device.
Abstract:
A method of forming a device associated with a via includes forming an opening or via, and forming at least a pair of conducting paths within the via. Also disclosed is a via having at pair of conducting paths therein.
Abstract:
An electronic circuit includes at least two organic components interconnected by conductor tracks and having a common carrier substrate. The components and the conductor tracks are formed from layer portions. An uppermost layer portion, remote from the carrier substrate, of the electronic circuit is of a patterned configuration comprising an electrically conducting material. The patterned uppermost layer portion on its side remote from the carrier substrate is provided with at least one protective layer arranged in congruent relationship with the uppermost layer portion. The at least two organic components include at least one first component of a first component type and at least one second component of a second component type different therefrom. Components of the same component type are respectively protected by a protective layer of the same composition and/or the same structure corresponding to that component type and differing from one another according to the corresponding component type.
Abstract:
A device comprising a power core wherein said power core comprises: at least one embedded singulated capacitor wherein said embedded singulated capacitor comprises at least a first electrode and a second electrode and wherein said embedded singulated capacitor is positioned on the outer layer of the power core so that at least one Vcc (power) terminal and at least one Vss (ground) terminal of a semiconductor device can be directly connected to at least one first and at least one second electrode, respectively and wherein the first and second electrode of the singulated capacitor is interconnected to the first and second electrode respectively of an external planar capacitor embedded within a printed wiring motherboard.
Abstract:
A package substrate having embedded capacitor is provided. The package substrate includes a first core circuit board, at least one embedded capacitor, a second core circuit board and a dielectric layer. The first core circuit board has at least one metal layer, and the first core circuit board has at least one first conductive through hole connected to the metal layer. At least one embedded capacitor is embedded in the first core circuit board and connected to the metal layer. The second core circuit board has at least one wiring layer, and the second core circuit board has at least one second conductive through hole connected to the wiring layer. The dielectric layer is laminated between the first core circuit board and the second core circuit board.
Abstract:
The electronic component includes a base material, a capacitor unit, and a wiring portion. The capacitor unit has a stacked structure including a first electrode portion provided on the base material, a second electrode portion including a first surface opposing the first electrode portion and a second surface opposite to the first surface, and a dielectric portion interposed between the electrode portions. The wiring portion includes a via portion having a surface on the base material side, and joined to the second surface of the second electrode portion via the surface on the base material side. The surface of the via portion on the base material side includes an extending portion extending outward of the periphery of the second surface of the second electrode portion.
Abstract:
A device comprising a power core wherein said power core comprises: at least one embedded singulated capacitor layer containing at least one embedded singulated capacitor wherein said embedded singulated capacitor comprises at least a first electrode and a second electrode and wherein said embedded singulated capacitor is positioned on the outer layer of the power core with both first and second electrodes of the capacitor on the outer layer of the power core so that at least one Vcc (power) terminal and at least one Vss (ground) terminal of a semiconductor device can be directly connected to at least one first and at least one second electrode, respectively.
Abstract:
A method for forming an embedded passive device module comprises depositing a first amount of an alkali silicate material, co-depositing an amount of embedded passive device material with the amount of alkali silicate material; and thermally processing the amount of alkali silicate material and the amount of embedded passive device material at a temperature sufficient to cure the amount of alkali silicate material and the amount of embedded passive device material and form a substantially moisture free substrate.