Abstract:
A multi-layer printed circuit board (PCB) includes a first wire layer, a middle layer above the first wire layer, a second wire layer above the middle layer, and a slanting via formed in the middle layer and the second wire layer. The manufacturing method includes the steps of providing a first wire layer and forming a first wiring on the first wire layer, forming a middle layer on the first wire layer, forming a second wire layer on the middle layer, forming a slanting via in the middle layer and the second wire layer wherein the direction of the slanting via is not orthogonal to the first and the second wire layers, forming a second wiring on the second wire layer by an etching method, and forming an electroplated layer in the via to connect the first wiring and the second wiring.
Abstract:
Methods are provided for making plated through holes usable for inserting and attaching connector probes. In a first method, a curved plated through hole is formed by bonding curved etchable wires to a first substrate, plating the wires with a non-etchable conductive material, encasing the plated wires with a dielectric material to form a second substrate, planing the second substrate to expose the etchable wire, and etching the wires to leave plated through holes. In a second method, wires coated with a first etchable layer are initially bonded to a substrate, a second non-etchable plating layer is then applied over the first layer, and the first layer is etched away leaving plated through holes with wires disposed inside. In a third embodiment, a layer of masking material is initially deposited on a substrate and etched to form holes which are filled with a sacrificial fill material, the masking material is then removed, the fill material plated, grinding is performed to remove some plating to expose the fill material, and the fill material is then etched away leaving plated attachment wells. Probes may be attached to the plated through holes or attachment wells to create resilient spring contacts to form a wafer probe card assembly. A twisted tube plated through hole structure is formed by supporting twisted sacrificial wires coated with the plating material in a substrate, and later etching away the wires.
Abstract:
A build-up structure for chip to chip interconnects and System-In-Package utilizing multi-angle vias for electrical and optical routing or bussing of electronic information and controlled CTE dielectrics including mesocomposites to achieve optimum electrical and optical performance of monolithic structures. Die, multiple die, Microelectromechanical Machines (MEMs) and/or other active or passive components such as transducers or capacitors can be accurately positioned on a substrate such as a copper heatsink and multi-angle stud bumps can be placed on the active sites of the components. A first dielectric layer is preferably placed on the components, thereby embedding the components in the structure. Through various processes of photolithography, laser machining, soft lithography or anisotropic conductive film bonding, escape routing and circuitry is formed on the first metal layer. Additional dielectric layers and metal circuitry are formed utilizing multi-angle vias to form escape routing from tight pitch bond pads on the die to other active and passive components. Multi-angle vias can carry electrical or optical information in the form of digital or analog electromagnetic current, or in the form of visible or non-visible optical bussing and interconnections.
Abstract:
A build-up structure for chip to chip interconnects and System-In-Package utilizing multi-angle vias for electrical and optical routing or bussing of electronic information and controlled CTE dielectrics including mesocomposites to achieve optimum electrical and optical performance of monolithic structures. Die, multiple die, Microelectromechanical Machines (MEMs) and/or other active or passive components such as transducers or capacitors can be accurately positioned on a substrate such as a copper heatsink and multi-angle stud bumps can be placed on the active sites of the components. A first dielectric layer is preferably placed on the components, thereby embedding the components in the structure. Through various processes of photolithography, laser machining, soft lithography or anisotropic conductive film bonding, escape routing and circuitry is formed on the first metal layer. Additional dielectric layers and metal circuitry are formed utilizing multi-angle vias to form escape routing from tight pitch bond pads on the die to other active and passive components. Multi-angle vias can carry electrical or optical information in the form of digital or analog electromagnetic current, or in the form of visible or non-visible optical bussing and interconnections.
Abstract:
A flexible, compliant layer of a single low modulus material for connecting a chip die directly to a circuit card without encapsulation. The flexible compliant layer provides stress relief caused by CTE thermal mismatch in chip die and circuit card. An array of copper plated vias are formed in said compliant layer with each via terminating on opposing surfaces of the layer in copper pads. Rather than copper, other metals, such as gold or nickel, may also be used. An array of holes may be positioned between said array of vias to provide additional resiliency. The plated vias may be angled with respect to said opposing surfaces to allow additional vertical and horizontal stress relief. Connection of the pads on one surface to high melt C-4 solder balls or columns on a chip die results in solder filled vias. Low melt solder connection of the pads on the other surface to a circuit card allows non-destructive rework of the cards.
Abstract:
The present invention is directed to an apparatus and method for connecting integrated circuits placed on opposite sides of a circuit board through utilization of conduction elements embedded in the circuit board and extending from one surface of the board to the other. Conductive traces extend along the surface of the circuit board from the conduction elements to the integrated circuits. The conductive traces may be formed from multiple conductive layers.
Abstract:
A flexible, compliant layer of a single low modulus material for connecting a chip die directly to a circuit card without encapsulation. The flexible compliant layer provides stress relief caused by CTE thermal mismatch in chip die and circuit card. An array of copper plated vias are formed in said compliant layer with each via terminating on opposing surfaces of the layer in copper pads. Rather than copper, other metals, such as gold or nickel, may also be used. An array of holes may be positioned between said array of vias to provide additional resiliency. The plated vias may be angled with respect to said opposing surfaces to allow additional vertical and horizontal stress relief. Connection of the pads on one surface to high melt C-4 solder balls or columns on a chip die results in solder filled vias. Low melt solder connection of the pads on the other surface to a circuit card allows non-destructive rework of the cards.
Abstract:
An elastomer interposer employed between a package and a printed circuit board and the method of manufacturing the same are disclosed. The elastomer interposer includes an elastomer, a plurality of conductive wires, Cu pads, solder resistant blocks and Ni/Au plated pads. The elastomer has two contact surfaces. The conductive wires are arranged inside the elastomer at a certain interval and tilted toward one of the contact surfaces with an inclined angle. The Cu pads are formed on both of the surfaces at a space, and electrically connected to the corresponding conductive wires. Also, the Ni/Au plated pads are formed over the Cu pads.
Abstract:
A probe card (40, 55) having probe card probes (36, 56) and a method for fabricating the probe card probes (36, 56). A layer of resist (23) is formed on a plating base (21). The layer of resist (23) is exposed to radiation (32) and developed to provide angled, tapered openings (33) exposing portions of the plating base (22). An electrically conductive material is electroplated on the exposed portions of the plating base (22) and fills the angled, tapered openings (33). The layer of resist (23) and portions of the plating base (22) between the electroplated conductive material are removed. The electrically conductive material forms the probe card probes (36) which are angled and tapered. In addition, the compliant probe card probes (56) may be stair-step shaped.
Abstract:
In a metal-clad laminate the requirements concerning the mechanical strength are functionally separated from the circuit connection requirement, so as to be able to bring the circuit connection, particularly for signals, "closer" to the electrotechnical characteristics of the chips. For this purpose and without taking account of the mechanical strength of the substrate, the layout miniaturization is optimized. In place of a circuit board (MCM), a laminate which can be built up to a circuit board is produced. The inventive laminate comprises an extremely thin foil with a plurality of extremely small holes simultaneously etched in an etching process. The hole diameter can be reduced by almost an order of magnitude (up to 20 .mu.m), which permits a sub-100 .mu.m technology. Such a laminate is not used as a mechanical support and is only provided for signal guidance. The effect of the miniaturization can be seen in the diameter for the plated-through holes. With a hole diameter reduction there is an increase in the current path density, which gives over 10000 plated-through holes per dm.sup.2. A drawing shows the compression ratio compared with standard technology.