Abstract:
A system for transmitting or receiving signals may include a dielectric substrate having a major face, a communication circuit, and an electromagnetic-energy directing assembly. The circuit may include a transducer configured to convert between RF electrical and RF electromagnetic signals and supported in a position spaced from the major face of the substrate operatively coupled to the transducer. The directing assembly may be supported by the substrate in spaced relationship from the transducer and configured to direct EM energy in a region including the transducer and along a line extending away from the transducer and transverse to a plane of the major face.
Abstract:
An electrical connector assembly including a printed circuit board that has base and cover layers of dielectric material and first and second ground planes of conductive material. The base and cover layers are stacked relative to each other and located between the first and second ground planes. The base layer has a conductor-receiving portion that extends beyond the cover layer. The circuit board also includes signal traces that are exposed to an open space that exists above the conductor-receiving portion. The connector assembly also includes a compression component that is configured to be positioned in the open space to press wire-terminating ends of signal conductors onto the signal traces at the conductor-receiving portion.
Abstract:
Disclosed herein are a printed circuit board (PCB) and a method for manufacturing the same. The PCB includes a base substrate, a circuit layer formed on the base substrate and including a connection pad, a solder resist layer formed on an upper portion of the base substrate and having an opening exposing the connection pad, a metal post formed on upper portions of the connection pad and the solder resist layer and having a plurality of diameters, and a seed layer formed on the upper portion of the solder resist layer and inner walls of the opening along an interface of the metal post.
Abstract:
An exemplary printed circuit board includes a main body and a fixing component. The main body includes a first signal layer, a grounding layer, a power layer, and a second signal layer, arranged in that order. A through hole is defined on the main body, and includes a latching hole and a connecting hole. The latching hole is defined by and extends through the first signal layer. The connecting hole is defined by and extends from the second signal layer to the grounding layer, and communicates with the latching hole. The fixing component passes through the through hole, and thereby forms a direct connection with a grounding point of an electronic device.
Abstract:
Methods of manufacturing at least a portion of a printed circuit board. The circuit board is formed to include a plurality of sub-assemblies, each of the sub-assemblies including a plurality of circuit layers and having at least one countersink and at least one hole, the countersink having a first diameter and a first depth from a first side of at least one of the sub-assemblies and into the at least one sub-assembly, the hole having a second diameter smaller than the first diameter and a second depth longer than the first depth from the first side of the at least one sub-assembly and into the at least one sub-assembly at the countersink; a metal metalized within the hole and the countersink; a lamination adhesive interposed between one and a corresponding one of the sub-assemblies and having at least one via formed therethrough; and a counter paste filled within the via.
Abstract:
There is provided a copper clad laminate (CCL) including: a metal plate; an insulating layer having a planar area greater than that of the metal plate and laminated on the metal plate; and a copper layer laminated on the insulating layer, wherein edges of the insulating layer extend outwardly beyond edges of the metal plate so that an insulation distance insulating the edges of the metal plate from edges of the copper layer is formed. The insulating layer may include a polyimide layer, and a polyimide bonding layer.
Abstract:
A wired circuit board includes a metal supporting layer, a first insulating layer, a conductive layer, a second insulating layer, and a ground layer. The first opening of the first insulating layer is surrounded by the second opening of the second insulating layer when projected in the thickness direction, and the ground layer fills the first opening via the second opening so as to come in contact with an upper surface of the metal supporting layer. Alternatively, the first opening surrounds the second opening when projected in the thickness direction, the second insulating layer fills a peripheral end portion of the first opening, and the ground layer fills the second opening so as to come in contact with the upper surface of the metal supporting layer.
Abstract:
A method of fabricating a wiring board includes forming a surface plating layer on a support member, and forming an external connecting pad on the surface plating layer formed on the support member such that an area of the external connecting pad formed on the surface plating layer is smaller than an area of the surface plating layer. The method also includes forming an insulating layer and a wiring layer on a surface of the support member where the external connecting pad is formed, and removing the support member.
Abstract:
A connecting structure of the present invention includes a first substrate, a second substrate on which the first substrate is laminated, and a sheet like connection body having one end connected to one principal surface of the first substrate and another end connected to one principal surface of the second substrate, wherein a lengthwise direction of the sheet like connection body is parallel to a perimeter part of the first substrate, and the sheet like connection body has a slit part extending from one of end portions thereof to a part thereof along the lengthwise direction, and has a first end and a second end divided by the slit part at one of end portions, the first end is connected to a principal surface of the first substrate in vicinity of a peripheral part of the first substrate, and the second end is connected to a principal surface of the second substrate in vicinity of a peripheral part of the first substrate.
Abstract:
Disclosed is a metal structure of a multi-layer substrate, comprising a first metal layer and a dielectric layer. The first metal layer has an embedded base and a main body positioned on the embedded base. The base area of the embedded base is larger than the base area of the main body. After the dielectric layer covers the main body and the embedded base, the dielectric layer is opened at the specific position of the first metal layer for connecting the first metal layer with a second metal layer above the dielectric layer. When the metal structure is employed as a pad or a metal line of the flexible multi-layer substrate according to the present invention, the metal structure cannot easily be delaminated or separated from the contacted dielectric layer. Therefore, a higher reliability for the flexible multi-layer substrate can be achieved.