Abstract:
A fiber optic darkfield ring light with many angled fiber optic light lines with direct illumination in a very small package. The fiber optic darkfield ring light includes a base with multiple light heads and multiple light covers attached thereto, a main cover, an optional cord grip, and an optional hood. It incorporates multiple fiber optic line arrays positioned at low angle and used in conjunction with a strobe light source.
Abstract:
Apparatus for measuring the optical absorbency of samples of liquids, method and reaction container for its implementation. The apparatus comprises a receiving body for receiving the reaction containers carrying the samples to be analyzed, with means for causing each of the reaction containers to be passed through by a luminous signal of controlled wavelength, having means for conducting it to a scanning head where the luminous signals are picked up by a single CCD sensor, constituting a digital processing system for evaluating the absorbency of the corresponding sample.
Abstract:
A fiber optic epi-fluorescence imaging system in which the optical fibers are rearranged so that the system can be used for measuring luminescence samples. The system comprises at least two optical fibers (32, 46) or bundles of fibers which lead to a CCD camera (74), the fibers or bundles of fibers from all samples being arranged in two sets, a first set which are formed from a non-fluorescing material and a second set which are formed from a material which may fluoresce but enables the fibers formed therefrom to have a higher numerical aperture than those of the first set.
Abstract:
A system and method that redistributes light from a light source. The controller can redistribute light to make an irradiance profile of the light source more uniform or make the irradiance profile match a fluid flow profile. The irradiance profile may be controlled by modifying light leakage from a plurality of waveguides or changing the light-directing properties of reflectors and/or lenses.
Abstract:
The present invention is directed to solving the problems associated with the detection of surface defects on metal bars as well as the problems associated with applying metal flat inspection systems to metal bars for non-destructive surface defects detection. A specially designed imaging system, which is comprised of a computing unit, line lights and high data rate line scan cameras, is developed for the aforementioned purpose. The target application is the metal bars (1) that have a circumference/cross-section-area ratio equal to or smaller than 4.25 when the cross section area is unity for the given shape, (2) whose cross-sections are round, oval, or in the shape of a polygon, and (3) are manufactured by mechanically cross-section reduction processes. The said metal can be steel, stainless steel, aluminum, copper, bronze, titanium, nickel, and so forth, and/or their alloys. The said metal bars can be at the temperature when they are being manufactured.
Abstract:
An illumination delivery system provides a spatially and angularly uniform shaped beam output with sufficient intensity to illuminate a sample surface for defect inspection. Light is transmitted through a shaped fiber optic bundle, a homogenizer, a diffuser, and an optional focusing optics system.
Abstract:
A macroscopic fluorescence illumination assembly is provided for use with an imaging apparatus with a light-tight imaging compartment. The imaging apparatus includes an interior wall defining a view port extending into the imaging compartment to enable viewing of a specimen contained therein. The illumination assembly includes a specimen support surface sized and dimensioned for receipt in the imaging compartment, and oriented to face toward the view port of the imaging apparatus. The support surface is substantially opaque and defines a window portion that enables the passage of light there through. The window portion is selectively sized and dimensioned such that the specimen, when supported atop the support surface, can be positioned and seated over the window portion in a manner forming a light-tight seal substantially there between. The illumination assembly further includes an excitation light source, and a bundle of fiber optic strands having proximal ends thereof in optical communication with the light source. The distal ends of the strands terminate proximate the window portion of the support surface. The distal ends each emit a respective beam of light originating from the light source which are then collectively directed toward the window portion and into a bottom side of the specimen wherein the diffused light passes there through and exits a topside thereof for receipt through the view port to view the fluorescence of the specimen.
Abstract:
An apparatus for measuring fluorescence from a sample, where an excitation system includes optical fibers or optical fiber bundles each starting from two or more lasers and mingled so as to form a single optical fiber bundle. Excitation light beams can be passed separately or simultaneously directly via this optical fiber bundle or via a common optical fiber bundle to a sample.
Abstract:
A postacquired spectrophotometer, for use with a sample and reference. The spectrophotometer has a filter unit, defining an axis of movement, and pluralities of designated sites and dark sites disposed in uniform relation to the axis. The designated and dark sites are disposed in alternation. Alternating designated sites have apertures and filters covering the apertures. Further, a main member, coaxial with the filter unit, has sample and reference beam paths, which are intersected by the sites. The main member has disposed, in operative relation to the actuators, an actuator sensor, which generates an integration actuator signal upon alignment with each integration actuator and a clamping actuator signal upon alignment with each clamping actuator. Moreover, a drive continuously moves the filter unit relative to the axis and beam paths. Further, a light distribution system directs light separately from the sample and reference to respective beam paths, and then to a detector, which produces a detector signal responsive to light received. Finally, means for processing the signals is provided, including a clamping circuit, integrators, and a demultiplexer.
Abstract:
An analyzer measures properties of multiple chemical samples, and includes an optical filter element having a long axis and positioned at a location where simultaneous multiple light beams, corresponding to the chemical samples to be measured, form a diffuse light spot elongated along an axis which is substantially aligned with the filter element long axis. The analyzer also includes a light source, filter means incorporating the filter element for transmitting spectrally selected portions of the light beams, sample cell means for exposing each sample to its associated light beam, and detector means for detecting the light beams after modification by the samples and after transmission by the filter. In a preferred embodiment, optical fibers carry the light beams to and from the chemical samples.