Abstract:
A focused ion beam device is described comprising a gas field ion source with an emitter emitting an ion beam including ions of gas, an ion beam column and a beam current control loop comprising a beam current measurement device. Furthermore, the focused ion beam device may have a sample charge control comprising measuring the sample charge. A method of operating a focused ion beam device is provided comprising applying a voltage between an emitter an electrode, applying gas to the emitter, emitting ions of a gas from the emitter and controlling a beam current by measuring the beam current with a beam current measurement device.
Abstract:
Methods that include using a noble gas ion beam to determine dopant information for a sample are disclosed, the dopant information including dopant concentration in the sample, dopant location in the sample, or both.
Abstract:
Disclosed are charged particle systems that include a tip, at least one gas inlet configured to supply gas particles to the tip, and a element having a curved surface positioned to adsorb un-ionized gas particles, and to direct desorbing gas particles to propagate toward the tip. The charged particle systems can include a field shunt connected to the tip, and configured to adjust an electric field at an apex of the tip.
Abstract:
A focused ion beam device is described. The focused ion beam device includes an ion beam column including an enclosure for housing a gas field ion source emitter with an emitter area for generating ions, an electrode for extracting ions from the gas field ion source emitter, one or more gas inlets adapted to introduce a first gas and a second gas to the emitter area, an objective lens for focusing the ion beam generated from the first gas or the second gas, a voltage supply for providing a voltage between the electrode and the gas field ion source emitter, and a controller for switching between a first voltage and a second voltage of the voltage supply for generating an ion beam of ions of the first gas or an ion beam of ions of the second gas.
Abstract:
A gas field ion source that can simultaneously increase a conductance during rough vacuuming and reduce an extraction electrode aperture diameter from the viewpoint of the increase of ion current. The gas field ion source has a mechanism to change a conductance in vacuuming a gas molecule ionization chamber. That is, the conductance in vacuuming a gas molecule ionization chamber is changed in accordance with whether or not an ion beam is extracted from the gas molecule ionization chamber. By forming lids as parts of the members constituting the mechanism to change the conductance with a bimetal alloy, the conductance can be changed in accordance with the temperature of the gas molecule ionization chamber, for example the conductance is changed to a relatively small conductance at a relatively low temperature and to a relatively large conductance at a relatively high temperature.
Abstract:
This invention discloses an electrochemical method for the preparation of single atom tips to replace the traditional vacuum evaporation method. The invented method for preparation of single atom tips includes the following steps: A substrate single crystal metal wire etched electrochemically to form a tip. The surface of the metal tip is cleaned. A small quantity of noble metal is plated on the apex of the tip in low concentration noble metal electrolyte. Annealing in vacuum or in inert gas ambient to diffuse the additional electroplated noble metal atoms and thus a single atom tip is formed on the surface of the substrate. The present invention also discloses the single atom tip so prepared. The single atom tip of this invention has only a very small number of atoms, usually only one atom, at its apex.
Abstract:
A focused ion beam device is described. The device includes an ion beam column including an enclosure for housing an emitter with an emitter area for generating ions, a first gas inlet adapted to introduce a first gas to the emitter area, a second gas inlet adapted to introduce a second gas different from the first gas to the emitter area, and a switching unit adapted to switch between introducing the first gas and introducing the second gas.
Abstract:
Methods that include using a noble gas ion beam to determine dopant information for a sample are disclosed, the dopant information including dopant concentration in the sample, dopant location in the sample, or both.