Abstract:
Provided is an X-ray tube which can perform stable X-ray radiation under a desired condition in a radiation region extending in a predetermined direction. Included are a base plate having an opening portion and made of alloy 426, an X-ray transmission window made of titanium foil and arranged to close the opening portion of the base plate, a flat box-like vessel portion attached to the base plate and inside of which is in a vacuum state, an X-ray target provided at the opening portion in the vessel portion, and an electron source injecting electrons to the X-ray target in the vessel portion. The electron source includes a liner cathode, a first control electrode pulling out electrons from the cathode and a second control electrode restricting radiation range of the pulled-out electrons. At this time, X-rays emitted from the X-ray window spreads radially from opening shape of the opening portion.
Abstract:
A two dimensional array distributed x-ray apparatus of this disclosure includes: a vacuum box which is sealed at its periphery, where the interior thereof is high vacuum; a plurality of electron transmitting units arranged in one plane in a two dimensional array on the wall of the vacuum box; an anode having targets corresponding to the plurality electron transmitting unit arranged in parallel with the plane of the plurality of electron transmitting units in the vacuum box; a power supply and control system having a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of the electron transmitting units, and a grid-controlled apparatus connected to each of the plurality of electron transmitting units; and a control system for controlling each power supply.
Abstract:
An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
Abstract:
An imaging module includes a plurality of cathodes and respective gates, each cathode configured to generate a separate beam of electrons directed across a vacuum chamber and each gate matched to at least one respective cathode to enable and disable each separate beam of electrons from being directed across the vacuum chamber. A target anode is fixed within the vacuum chamber and arranged to receive the separate beam of electrons from each of the plurality of cathodes and, therefrom, generate a beam of x-rays. A deflection system is arranged between the plurality of cathodes and the target anode to generate a variable magnetic field to control a path followed by each of the separate beams of electrons to the target anode.
Abstract:
A logging tool is for determining a property of a subsurface formation having a borehole therein and includes a housing to fit within the borehole. An x-ray generator is carried by the housing and includes at least three extractor electrodes, an electron emitter to emit electrons toward the extractor electrodes, and a target downstream of the extractor electrodes. The extractor electrodes have independently selectable potentials so as to allow direction of an electron beam, formed from the electrons emitted by the electron emitter, toward different longitudinal and lateral regions of the target, the target to emit x-rays into the subsurface formation when struck by the electron beam. A radiation detector is carried by the housing to detect incoming radiation resulting from interactions between the x-rays and the subsurface formation. Processing circuitry is coupled to the radiation detector to determine the property of the subsurface formation based upon detected incoming radiation.
Abstract:
Provided herein is a field emission device. The field emission device includes a cathode which is connected to a negative power supply and emits electrons, an anode which is connected to a positive power supply and includes a target material receiving the electrons emitted from the cathode, and a ground electrode which is formed to face the anode and has an opening through which the electrons emitted from the cathode pass. The ground electrode is grounded so that when an arc discharge occurs due to high voltage operation of the anode, electric charge produced by the arc discharge is emitted to a ground.
Abstract:
An X-ray tube assembly is provided including an emitter configured to emit an electron beam, an emitter focusing electrode, an extraction electrode, and a downstream focusing electrode. The emitter focusing electrode is disposed proximate to the emitter and outward of the emitter in an axial direction. The extraction electrode is disposed downstream of the emitter and the emitter focusing electrode. The extraction electrode has a negative bias voltage setting at which the extraction electrode has a negative bias voltage with respect to the emitter. The downstream focusing electrode is disposed downstream of the extraction electrode, and has a positive bias voltage with respect to the emitter. When the extraction electrode is at the negative bias voltage setting, the electron beam is emitted from an emission area that is smaller than a maximum emission area from which electrons may be emitted.
Abstract:
An electron emission device includes a cathode electrode; a mesh-shaped gate electrode spaced apart from the cathode electrode; a plurality of gate spacers between the cathode electrode and the gate electrode; and a plurality of electron emission sources between the cathode electrode and the gate electrode, and alternating with the plurality of gate spacers.
Abstract:
Described here is a method for performing phase contrast imaging using an array of independently controllable x-ray sources. The array of x-ray sources can be controlled to produce a distinct spatial pattern of x-ray radiation and thus can be used to encode phase contrast signals without the need for a coded aperture. The lack of coded aperture increases the flexibility of the imaging method. For instance, because a fixed, coded aperture is not required, the angular resolution of the imaging technique can be increased as compared to coded-aperture imaging. Moreover, the lack of a radioopaque coded aperture increases the photon flux that reaches the subject, thereby increasing the attainable signal-to-noise ratio.
Abstract:
A two dimensional array distributed x-ray apparatus of this disclosure comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged in one plane in a two dimensional array on the wall of the vacuum box; an anode having targets corresponding to the plurality electron transmitting unit arranged in parallel with the plane of the plurality of electron transmitting units in the vacuum box; a power supply and control system having a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of the electron transmitting units, a grid-controlled apparatus connected to each of the plurality of electron transmitting units, a control system for controlling each power supply; wherein the anode comprises: an anode plate made of metal and parallel to the upper surface of the electron transmitting unit; a plurality of targets arranged on the anode plate and disposed corresponding to the positions of the electron transmitting unit, the bottom surface of the target is connected to the anode plate and the upper surface of the target has a predetermined angle with the anode plate.