Abstract:
Lamp assemblies and methods of making the same are provided. Such a lamp assembly can include a heat sink and a light-emitting diode package that can be mounted to the heat sink. The light-emitting diode package can include a substrate with a top surface and bottom surface, a lens, and electrical contacts on the surface of the substrate. The lamp assembly can also include a printed circuit board with a face surface, a rear surface opposite the face surface and an opening extending from the face surface to the rear surface. The printed circuit board can have electrical contacts thereon for electrical connection with the electrical contacts of the light-emitting diode package. The substrate of the light-emitting diode package can engage the opening of the printed circuit board to mechanically couple the light-emitting diode package to the printed circuit board. When assembled, a bottom surface of the substrate can be flush and aligned with a rear surface of the printed circuit board.
Abstract:
A portable terminal includes a circuit board having edge and component mounting surfaces. The edge surface includes a first contact terminal and an antenna includes a second contact terminal. The component mounting surface is at least substantially parallel with a display screen of the terminal and the edge surface is at least substantially perpendicular to the display screen. The first and second contact terminals are coupled together to establish an electrical connection between the circuit board and antenna when the antenna and edge surface are mounted in parallel to one another within a housing of the terminal.
Abstract:
A dual-personality extended USB (EUSB) system supports both USB and EUSB memory cards using an extended 9-pin EUSB socket. Each EUSB device 101 includes a PCBA having four standard USB metal contact pads disposed on an upper side of a PCB, and several extended purpose contact springs that extend through openings defined in the PCB. A single-shot molding process is used to form both an upper housing portion on the upper PCB surface that includes ribs extending between adjacent contact pads, and a lower molded housing portion that is formed over passive components and IC dies disposed on the lower PCB surface. The passive components are mounted using SMT methods, and the IC dies are mounted using COB methods. The extended 9-pin EUSB socket includes standard USB contacts and extended use contacts that communicate with the PCBA through the standard USB metal contacts and the contact springs.
Abstract:
In accordance with the teaching of the present invention, a system and method for securing a ball grid array to a printed wire board is provided. In a particular embodiment, a ball grid array comprises one or more balls configured to attach to a spring comprising one or more turns. In addition, there is a spacer plate configured to align and separate the springs, a soldering aid configured to align solder on the printed wire board and a printed wire board configured with conductive pads to attach to the ball grid array via the springs.
Abstract:
A method includes providing a pad chip having contact pads, providing a spring chip having micro-springs, applying a chemical activator to one of either the pad chip or the spring chip, applying an adhesive responsive to the chemical activator on the other of the pad chip or the spring chip, aligning the pad chip to the spring chip such that the micro-springs will contact the contact pads, and pressing the pad chip and the spring chip together such that the chemical activator at least partially cures the adhesive.
Abstract:
In accordance with an embodiment, a semiconductor package includes a first surface configured to be mounted on a circuit board, and a region of thermally expandable material configured to push the first surface of the semiconductor package away from the circuit board when a temperature of the thermally expandable material exceeds a first temperature.
Abstract:
According to one embodiment, an electronic apparatus includes a housing, a wiring pattern, a recess, a pad portion, and an electronic component. The wiring pattern is formed on an inner surface of the housing from an electrically conductive adhesive. The recess is in the inner surface of the housing. The pad portion is formed in the recess from the conductive adhesive and connected to an end portion of the wiring pattern. The electronic component includes a terminal which contacts the pad portion.
Abstract:
The present invention is to provide a method of manufacturing a printed wiring board with a component mounting pin to connect a printed wiring board and an electronic component. A method of manufacturing a printed wiring board (1) with a component mounting pin (18) at a stage to form a component mounting surface after layers of a predetermined number were formed includes the steps of forming a conductive land (11) on the component mounting surface, covering the component mounting surface with an insulating layer (12) except the conductive land (11) of the component mounting surface, partly forming near the conductive land (11) of the upper surface of the insulating layer (12) a sacrificial layer (14) which can be removed in the subsequent process, forming conductive layers (16, 17) on the upper surfaces of the conductive land (11) and the sacrificial layer (14) with a plating process to pattern the conductive layers (16, 17), forming the component mounting pin (18) elongated from the conductive land (11) by partly removing the sacrificial layer (14) located under the patterned conductive layers (16, 17) and erecting the component mounting pin (18).
Abstract:
An electronic device includes a chassis, a circuit board and the resilient piece. The chassis includes a bottom panel. The circuit board has a ground plane. The resilient piece includes a soldering portion and a resisting portion. The soldering portion is in electrical connection with the ground plane, and the resisting piece abuts the bottom panel to prevent the electromagnetic interference (EMI) from the circuit board.
Abstract:
A termination unit (144) for use with a system that permits the monitoring of a computer network to perform network inventories. The termination unit takes the form of a cap that engages the termination face of a network jack and has a sensing circuit (246) integrated therewith so that, once engaged with the jack, the sensing circuit is connected to two terminals of the jack. The sensing circuit may include a resistor, capacitor or inductor, any of which provide a known sensing value that is different than a sensed value of an end-user device used on the network, but less than infinity so that the system senses when an end-user device is connected to or disconnected from the network.