Abstract:
A flexible copper-clad laminate for a vehicle LED lamp is provided and includes a copper-clad layer and a composite layer that are laminated. The composite layer includes a polyimide layer and thermoplastic polyimide layers. An outermost layer of the composite layer is formed as a thermoplastic polyimide layer. A total thickness of the thermoplastic polyimide layers and an entire thickness of the polyimide layer with respect to a total thickness of the composite layer is about 10 to 50% and 50 to 90%, respectively. The total thickness of the thermoplastic polyimide layers and the entire thickness of the polyimide layer with respect to the thickness of the composite layer is about 20 to 40% and 60 to 80%, respectively. A thickness of the copper-clad layer is about 30 to 80 μm, and the total thickness of the composite layer is about 10 to 15 μm.
Abstract:
The invention relates to a shading device (10) for a greenhouse (15), with a shading element (20) and at least one lighting element (50,50′), wherein the shading element (20) comprises an outer side (21) and an inner side (22), the shading element (20) is formed from interwoven electrically conductive first thread elements (30,30′) and electrically insulating second thread elements (40), the first thread element (30,30′) comprises a reflective mean (33), reflecting an ambient light (60), the lighting element (50,50′) is arranged at the inner side (22) of the shading element (20) and connected with the first thread element (30,30′), and the lighting element (50,50′) is driven by an electrical current, conducted by the first thread element (30,30′), resulting in the emission of an artificial light (51), illuminating a plant (80) growing in the greenhouse (15).
Abstract:
An origami enabled manufacturing system. The system uses origami design principles to create functional materials, structures, devices and/or systems having an adjustable size and/or shape. An operational device can be coupled to a planar substrate shaped and sized to correspond to a desired origami shape of an origami pattern. A plurality of planar substrates can be coupled together by a plurality of connection members that corresponds to one or more crease of the origami pattern. An array of planar substrates can be formed that convert into a three dimensional structure with origami shape. The resulting three-dimensional structure provides smaller projection area, higher portability and deformability.
Abstract:
A method for manufacturing a non-planar printed circuit board assembly (1) is disclosed. The method comprises providing a planar formable substrate (2) for supporting a conductive material (3) and at least one electronic component (4), printing a circuit pattern of an uncured conductive material (3) on the planar substrate (2), forming the substrate (2) and the uncured conductive material (3) into a non-planar shape, and curing the conductive material (3), wherein the substrate (2) comprises a metal sheet and an electrically insulating coating (2b) arranged between the metal sheet and the conductive material (3).
Abstract:
A shading device for a greenhouse includes a shading element and at least one lighting element, wherein the shading element comprises an outer side and an inner side. The shading element is formed from interwoven electrically conductive first thread elements and electrically insulating second thread elements. The first and/or second thread elements each may be adapted for reflecting an ambient light. The lighting element(s) may be arranged at the inner side of the shading element and connected with the first thread elements, and the lighting element(s) may be driven by an electrical current, conducted by the first thread elements, resulting in the emission of an artificial light, which may illuminate a plant growing in the greenhouse.
Abstract:
A method for manufacturing a non-planar printed circuit board assembly (1) is disclosed. The method comprises providing a planar formable substrate (2) for supporting a conductive material (3) and at least one electronic component (4), printing a circuit pattern of an uncured conductive material (3) on the planar substrate (2), forming the substrate (2) and the uncured conductive material (3) into a non-planar shape, and curing the conductive material (3), wherein the substrate (2) comprises a metal sheet and an electrically insulating coating (2b) arranged between the metal sheet and the conductive material (3).
Abstract:
A device comprising a first and a second electrically conductive textile portion is provided, wherein the first and second textile portions are electrically isolated from each other. The device also comprises an electrical element having a first contact pad which is electrically connected to the first textile portion and a second contact pad which is electrically connected to the second textile portion, wherein the first and second textile portions are adapted to supply the electrical element with electrical power. An improved textile device is thereby provided, which is capable of supplying an electrical element with electrical power.
Abstract:
A circuit-and-heat-dissipation assembly includes: a heat sink including a heat absorbing base and a heat dissipating element, the heat absorbing base having a circuit-forming surface and an element-forming surface, the heat dissipating element protruding from the element-forming surface for dissipating heat conducted from the heat absorbing base into an ambient environment; an insulator layer formed on the circuit-forming surface; and a patterned circuit formed on the insulator layer.
Abstract:
An illumination device comprises a holder, a plurality of light emitting elements, a translucent cover and a lamp cap structure. The holder comprises a heat dissipating base body and a carrying unit. The carrying unit is connected to a top portion of the heat dissipating base body and comprises a carrying base body, a circuit pattern and a heat dissipating pattern, the circuit pattern and the heat dissipating pattern are directly formed to a surface of the carrying base body, the circuit pattern has a plurality of mounting positions, the heat dissipating pattern at least extends from a region close to the mounting position to a region where the heat dissipating pattern can contact the heat dissipating base body. The plurality of light emitting elements are respectively provided at the plurality of the mounting positions and establish an electrical connection with the circuit pattern.
Abstract:
Techniques are disclosed for integrating the LED lead frame into the LED circuit fabrication process. The LED packages within the lead frame may be spaced according to the final spacing of the LED packages on the finished circuit board, such that multiple LED packages may be attached to a circuit board at a time by applying the lead frame to circuit board and then removing portions of the lead frame, leaving the LED packages attached to the board. The LED packages may be attached using solder or conductive epoxy, in some embodiments. Alternatively, part of the lead frame may include conductive wires forming one or more strings of LED packages. An entire string of LED packages may then be removed from the lead frame in a single motion and placement may be performed for a string of LED packages all at once rather than for individual LED packages.