Abstract:
A crankshaft drive in an internal combustion engine, which comprises at least one cylinder having a cylinder head, and a crankcase housing a crankshaft rotating at a predetermined direction and at a predetermined speed, and a balance shaft extending parallel to the crankshaft and rotating at the predetermined speed of the crankshaft in a direction opposite to the predetermined rotating direction of the crankshaft, the crankshaft and the balance shaft carrying balance weight means for balancing a mass of first order. An auxiliary shaft extends parallel to the crankshaft and rotates at the predetermined speed of the crankshaft in the predetermined rotating direction of the crankshaft, the auxiliary shaft carrying a counterweight for balancing a residual moment resulting from the rotating balance shaft with respect to the rotating crankshaft.
Abstract:
The invention relates in particular to a camshaft setting mechanism according to the vane cell principle, which has a drive gear (1) joined with the crankshaft through a toothed belt or a control chain. The drive gear includes a hollow space (8), and an impeller (11) is installed in the hollow space (8). The impeller is fixedly connected to and rotates with the camshaft (14). The drive gear (1) has at least one working chamber (4) on the interior of its circumferential wall (2), and each vane (12) of the impeller (11) subdivides the working chambers (4) into two pressure areas (9, 10) in each case. To avoid leakage through the slits (13) between impeller (11) and the drive gear (1) at high oil temperatures, the impeller (11) is made of a material which has a higher thermal expansion coefficient than the material of the drive gear (1), and that the pressure areas (9, 10) in the hollow space (7) of the drive gear (1) are sealed off by thermal expansion of the impeller (11) when the motor is in operation.
Abstract:
A cam shaft assembly for an engine has a hollow elongate shaft with a plurality of cam lobes and bearing journals received on and positioned along the shaft in a predetermined spaced apart relationship. The cam lobes are further oriented angularly in a predetermined alignment relative to one another. A radial thrust bearing is received and positioned on one end of the shaft. Each of the elements is secured to the shaft by mechanically expanding the shaft into an interference relationship with an opening in each element. A cam timing gear is fastened to the one end of the shaft by a fastener passing through the gear and into the one end of the shaft. Threads formed on the fastener engage complimentary threads formed on the internal surface of the shaft to allow the cam gear to be torqued down. A recess is formed in the shaft, the cam gear or both for receiving a projection or key which accurately aligns the gear to the cam lobes on the shaft and locks the gear in position.
Abstract:
A cam shaft having a cam piece disposed on a locking member or plurality of locking members provided on a shaft at predetermined positions. A recess or recesses formed in the cam piece align with and engage the locking members disposed on the shaft. The cam piece is secured to the shaft by a resin injected into and around the recess such that the cam piece is integrally fixed on the shaft when the resin hardens.
Abstract:
A roller camshaft for actuating cylinder poppet valves of an internal combustion engine includes a carrier shaft adapted for rotation by an engine crankshaft. The camshaft may be equipped with more than one cam lobe, with each lobe having a base circle portion, an acceleration ramp, a deceleration ramp, a tappet contacting roller housed in a socket positioned at a nose of the lobe, a leading transition ramp located adjacent both the acceleration ramp and the roller, and a trailing transition ramp located adjacent both the deceleration ramp and the roller.
Abstract:
An intake cam and an exhaust cam are formed integrally with a cam shaft, and a decompression cam is additionally provided adjacently to the front side of the exhaust cam. A rib is formed in back of the intake cam. A cylindrical surface portion having a diameter being the same as that of the outer periphery surface of a ball bearing for supporting the front portion of the cam shaft and being larger than the diameter of the base circle of the cam shaft, is formed on the front crank case, and a locking stepped portion is formed in back of the cylindrical surface portion. Cutout portions are formed in the locking stepped portion so that the cam shaft can be pulled forward in the state that the intake cam, exhaust cam and the decompression cam are arranged.
Abstract:
In an engine valve drive control device, a cam lobe is removably engaged with a cam shaft of a valve actuating line of an engine. The cam lobe is rotated, when engaged, together with the cam shaft to drive a valve. Free rotation of the disengaged cam lobe is halted by a cam rotation halting device to leave the valve inactive. The cam lobe is made axially slidable in the axial direction with respect to the cam shaft, and the engagement/disengagement of the cam lobe with/from the cam shaft are switched according to the sliding motion of the cam lobe.
Abstract:
In an arrangement for mounting a cam shaft and associated valve control elements on an internal combustion engine which has a cylinder head with intake and exhaust valves operated by an overhead cam shaft via rocker arms, the camshaft is supported on a cam shaft housing having spaced bearing blocks rotatably supporting the cam shaft and girders extend between the bearing blocks and have longitudinally extending bores receiving rocker arm support shafts and the girders have recesses wherein rocker arms are pivotally supported on the rocker arm support shaft extending through the recesses. The arrangement requires little mounting space on the cylinder head and the cam shaft housing can be mounted, preassembled with cam shaft and rocker arms, on the cylinder head.
Abstract:
A VRS sensor detects the angular rotation of a variable position camshaft which rotates in a variable relationship to a crankshaft, and transmits a Variable Cam Timing/Cylinder IDentification signal, representative of the position of the angular rotation of the camshaft, to an electronic engine controller (EEC). A profile ignition pickup (PIP) sensor detects the rotation of the crankshaft and transmits a PIP signal, representative of the rotation of the crankshaft to the EEC. The EEC receives the VCT/CID signal and the PIP signal and identifies the position of a first firing cylinder in a predetermined sequence of cylinder firing and determines the angular position of the camshaft in relation to the crankshaft by detecting the varying time duration between VCT/CID signals and PIP signals.
Abstract:
A camshaft made of cast iron containing at least one element selected from the group consisting of Bi, Te, Se, As, Sb and Sn in a total amount of 0.0001 to 0.1 weight %, preferably, 0.001 to 0.1 weight %. The cast iron may further contain at least one element selected from the group consisting of Ni, Cu and Co, in an amount of 0.2 to 5.0 weight %. Furthermore, in the camshaft of the present invention, a carbide area ratio at the sliding surface of the cam lobe portion is not less than 40%, the chilled carbide has an average grain diameter of not more than 15 .mu.m, and the sliding surface of the cam lobe portion has a hardness of not less than HRC 53.