Abstract:
An ion beam absorbing apparatus for an ion implanter comprises an ion absorber for absorbing ions in an ion beam generated by the ion implanter, and support means for supporting the ion absorber and adapted for connection with the ion implanter, so that when so connected, the ion absorber can intercept the ion beam and absorb ions not intercepted by a target to be implanted with beam ions. The support means is further adapted for supporting the ion absorber in a plurality of different positions which can be selected so that respective different parts of the ion absorber intercept the ion beam.
Abstract:
Ion implantation equipment is modified so as to provide filament reflectors to a filament inside of an arc chamber, and to remove the electrical insulators for the filament outside of the arc chamber and providing a shield, thereby reducing the formation of a conductive layer on said insulators and greatly extending the lifetime and reducing downtime of the equipment. The efficiency of the equipment is further enhanced by an interchangeable liner for the arc chamber that increases the wall temperature of the arc chamber and thus the electron temperature. The use of tungsten parts inside the arc chamber, obtained either by making the arc chamber itself or portions thereof of tungsten, particularly the front plate having the exit aperture for the ion beam, or by inserting a removable tungsten liner therein, decreases contamination of the ion beam. Serviceability of the arc chamber is improved by using a unitary clamp that separately grips both the filament and filament reflectors. This clamp can also advantageously be made of tungsten.
Abstract:
Ion implantation equipment is modified so as to provide filament reflectors to a filament inside of an arc chamber, and to remove the electrical insulators for the filament outside of the arc chamber and providing a means of shielding, thereby reducing the formation of a conductive layer on said insulators and greatly extending the lifetime and reducing downtime of the equipment. The efficiency of the equipment is further enhanced by means of an interchangeable liner for the arc chamber that increases the wall temperature of the arc chamber and thus the electron temperature. The use of tungsten parts inside the arc chamber, obtained either by making the arc chamber itself or portions thereof of tungsten, particularly the front plate having the exit aperture for the ion beam, or by inserting a removable tungsten liner therein, decreases contamination of the ion beam. Serviceability of the arc chamber is improved by means of a unitary clamp that separately grips both the filament and filament reflectors. This clamp can also advantageously be made of tungsten.
Abstract:
An ion implantation system is modified to allow variation in the size of the aperture of the mass resolving system, thereby allowing more ions of one mass or ion of more than one mass, such as isotopes, to pass through said opening. Including all isotopes of the desired dopant ions to be collected increases beam current, and consequently the throughput of the implantation process, reduces contamination, and improves the dosage control.
Abstract:
Ion implantation equipment is modified so as to provide filament reflectors to a filament inside of an arc chamber, and to remove the electrical insulators for the filament outside of the arc chamber and providing a means of shielding, thereby reducing the formation of a conductive layer on said insulators and greatly extending the lifetime and reducing downtime of the equipment. The efficiency of the equipment is further enhanced by means of an interchangeable liner for the arc chamber that increases the wall temperature of the arc chamber and thus the electron temperature. The use of tungsten parts inside the arc chamber, obtained either by making the arc chamber itself or portions thereof of tungsten, particularly the front plate having the exit aperture for the ion beam, or by inserting a removable tungsten liner therein, decreases contamination of the ion beam. Serviceability of the arc chamber is improved by means of a unitary clamp that separately grips both the filament and filament reflectors. This clamp can also advantageously be made of tungsten.
Abstract:
Ion implantation equipment is modified so as to provide filament reflectors to a filament inside of an arc chamber, and to remove the electrical insulators for the filament outside of the arc chamber and providing a means of shielding, thereby reducing the formation of a conductive layer on said insulators and greatly extending the lifetime and reducing downtime of the equipment. The efficiency of the equipment is further enhanced by means of an interchangeable liner for the arc chamber that increases the wall temperature of the arc chamber and thus the electron temperature. The use of tungsten parts inside the arc chamber, obtained either by making the arc chamber itself or portions thereof of tungsten, particularly the front plate having the exit aperture for the ion beam, or by inserting a removable tungsten liner therein, decreases contamination of the ion beam. Serviceability of the arc chamber is improved by means of a unitary clamp that separately grips both the filament and filament reflectors. This clamp can also advantageously be made of tungsten.