Abstract:
A through-silicon via stack package contains package units. Each package unit includes a semiconductor chip; a through-silicon via formed in the semiconductor chip; a first metal line formed on an upper surface and contacting a portion of a top surface of the through-silicon via; and a second metal line formed on a lower surface of the semiconductor chip and contacting a second portion of a lower surface of the through-silicon via. When package units are stacked, the second metal line formed on the lower surface of the top package unit and the first metal line formed on the upper surface of the bottom package unit are brought into contact with the upper surface of the through-silicon via of the bottom package unit and the lower surface of the through-silicon via of the top package unit, respectively. The stack package is lightweight and compact, and can form excellent electrical connections.
Abstract:
Patterns of a nonvolatile memory device include a semiconductor substrate that defines active regions extending in a longitudinal direction, an isolation structure formed between the active regions, a tunnel insulating layer formed on the active regions, a charge trap layer formed on the tunnel insulating layer, a first dielectric layer formed on the charge trap layer and the isolation structure, wherein the first dielectric layers is extended along a lateral direction, a control gate layer formed on the first dielectric layer, wherein the control gate layer is extended along the lateral direction, and a second dielectric layer formed on a sidewall of the control gate layer along the lateral direction and coupled to the first dielectric layer.
Abstract:
A temperature detection circuit of a semiconductor memory apparatus includes a fixed period oscillator, a temperature variable signal generating unit and a counting unit. The oscillator is configured to generate a fixed period oscillator signal when an enable signal is enabled. The temperature variable signal generating unit is configured to generate a temperature variable signal whose enable interval varies based on temperature variations, when the enable signal is enabled. The counting unit is configured to count the oscillator signal during the enable interval of the temperature variable signal to generate a temperature information signal.
Abstract:
There is provided a charge trap type non-volatile memory device and a method for fabricating the same, the charge trap type non-volatile memory device including: a tunnel insulation layer formed over a substrate; a charge trap layer formed over the tunnel insulation layer, the charge trap layer including a charge trap polysilicon thin layer and a charge trap nitride-based layer; a charge barrier layer formed over the charge trap layer; a gate electrode formed over the charge barrier layer; and an oxide-based spacer formed over sidewalls of the charge trap layer and provided to isolate the charge trap layer.
Abstract:
A phase change memory device capable of reducing disturbances between adjacent PRAM memory cells and a fabrication method are presented. The phase change memory device includes word lines, heating electrodes, an interlayer insulating layer, and a phase change lines. The word lines are formed on a semiconductor substrate and extend in parallel with a constant space. The heating electrodes are electrically connected to the plurality of word lines. The interlayer insulating layer insulates the heating electrodes. The phase change lines extend in a direction orthogonal to the word line and are electrically connected to the heating electrodes. Curves are formed on a surface of the interlayer insulating layer between the word lines such that the effective length of the phase change layer between adjacent heating electrodes is larger than the physical distance between the adjacent heating electrodes.
Abstract:
A spiral staircase shaped stacked semiconductor package is presented. The package includes a semiconductor chip module, a substrate and connection members. The semiconductor chip module includes at least two semiconductor chips which have chip selection pads and through-electrodes. The semiconductor chips are stacked such that the chip selection pads are exposed and the through-electrodes of the stacked semiconductor chips are electrically connected to one another. The substrate has the semiconductor chip module mounted thereto and has connection pads. The connection members electrically connect the chip selection pads to respective connection pads.
Abstract:
A substrate for a semiconductor package includes a ball land disposed on one surface of an insulating layer. A solder resist is applied to the surface of insulating layer while leaving the ball land exposed. A coating film is applied on the exposed surface of the ball land. The coating film includes a high molecular compound having metal particles. In the substrate having the ball land with the coating film formed thereon, it is not necessary to subject the substrate to a UBM formation process.
Abstract:
A semiconductor package includes a substrate including a substrate body having a first face and a second face opposing the first face. A first through electrode passes through the substrate body between the first face and the second face. An insulation member is disposed over the first face; and a connection member having a first conductive unit disposed inside of the insulation member is electrically connected to the first through electrode, and a second conductive unit electrically connected to the first conductive unit is exposed at side faces of the insulation member. A semiconductor chip having third and fourth faces is disposed over the first face of the substrate body in a vertical direction. A second through electrode passes through the substrate body between the third and fourth faces and is electrically connected to the second conductive unit.
Abstract:
The present invention discloses method for manufacturing capacitor of semiconductor device wherein a bonding layer is exposed via etch-back process without using a contact hole mask. In accordance with the method of the present invention, an interlayer insulating film, a bonding layer and a hard mask layer are sequentially formed on a semiconductor substrate. The hard mask layer, the bonding layer and the interlayer insulating film are then etched to form a storage electrode contact hole. The storage electrode contact hole is partially filled to form a storage electrode contact plug and the remaining portion is filled with a barrier metal layer pattern. The hard mask layer is then removed and a storage electrode contacting the barrier metal layer pattern is then formed on the bonding layer.
Abstract:
Disclosed is a precharge apparatus in a semiconductor memory device and a precharge method using the same. The precharge apparatus includes a memory array in which a plurality of memory banks are divided into at least two memory groups, and a precharge all command decoder to generate at least two precharge signals according to a precharge command signal and an address signal, wherein the at least two precharge signals are each output with a time lag according to a control signal to precharge the ate least two memory groups with a time lag. Therefore, the peak current is distributed to reduce the power bouncing.