Abstract:
Methods and devices are provided for anchoring suture to bone. In one exemplary embodiment, a cannulated suture anchor is provided and it includes a suture-engaging member formed therein and configured to receive a suture therearound such that trailing ends of the suture can extend through the suture anchor. The present invention also provides exemplary sutures and drivers that can be used with the various methods and devices disclosed herein, or with other methods and devices known in the art.
Abstract:
A pivoting headrest assembly having a pivotally supported and cable actuated hook secured to fixed bracket. The hook engages a pin associated with a widthwise extending and upwardly biased support secured within a pair of side channels associated with the fixed bracket. Upon triggering the release of the hook, the support is upwardly displaced within the side channels. A pair of end supported pivotal linkages are secured in coaxial fashion with the ends of the displaceable support. Upper ends of the linkages pivotally engage a base plate of an upper pivotally driven headrest bun support offset from a pivotal engagement established between the base plate and upper end of the headrest bracket. The linkages are configured so that upward displacement exerted by the support is converted to the forward dump rotation of the headrest bun support.
Abstract:
A pivoting headrest assembly including a bracket supported upon a seatback frame. A headrest support secures a bun and is pivotally secured to the bracket in a forward biased direction. A sector is pivotally secured to the bracket and to which is attached the headrest support. A release catch is pivotally supported at a further location of the bracket and is biased in a first upward direction so that the catch abuts a projecting pin associated with the sector in an upright design position established by the headrest support. A cable is secured to a support fixed to a side of the bracket and engages the catch at a location offset from its pivot axis relative to the bracket. Upon displacement of the cable, the catch is actuated out of engagement with the sector, resulting in the headrest support pivoting relative to the seatback.
Abstract:
A mechanical ventilator for ventilating a patient employs an air displacement member mounted for oscillating motion in a chamber; preferably the chamber is semi-cylindrical and the air displacement member is a vane mounted for oscillating movement about an axis of rotation such that a free outer edge surface of the vane is maintained in closely spaced apart relationship with the interior wall of the chamber throughout the oscillating; the ventilator permits significant variation in the ventilation flow waveform.
Abstract:
Methods and devices are provided for anchoring suture to bone. In one exemplary embodiment, a cannulated suture anchor is provided and it includes a suture-engaging member formed therein and configured to receive a suture therearound such that trailing ends of the suture can extend through the suture anchor. The present invention also provides exemplary sutures and drivers that can be used with the various methods and devices disclosed herein, or with other methods and devices known in the art.
Abstract:
A pivoting headrest assembly including a bracket supported upon a seatback frame. A headrest support secures a bun and is pivotally secured to the bracket in a forward biased direction. A sector is pivotally secured to the bracket and to which is attached the headrest support. A release catch is pivotally supported at a further location of the bracket and is biased in a first upward direction so that the catch abuts a projecting pin associated with the sector in an upright design position established by the headrest support. A cable is secured to a support fixed to a side of the bracket and engages the catch at a location offset from its pivot axis relative to the bracket. Upon displacement of the cable, the catch is actuated out of engagement with the sector, resulting in the headrest support pivoting relative to the seatback.
Abstract:
A pivoting headrest assembly having a pivotally supported and cable actuated hook secured to fixed bracket. The hook engages a pin associated with a widthwise extending and upwardly biased support secured within a pair of side channels associated with the fixed bracket. Upon triggering the release of the hook, the support is upwardly displaced within the side channels. A pair of end supported pivotal linkages are secured in coaxial fashion with the ends of the displaceable support. Upper ends of the linkages pivotally engage a base plate of an upper pivotally driven headrest bun support offset from a pivotal engagement established between the base plate and upper end of the headrest bracket. The linkages are configured so that upward displacement exerted by the support is converted to the forward dump rotation of the headrest bun support.
Abstract:
A pivoting headrest assembly incorporated into a rear row vehicle seat including a base and a pivotally supported seatback. A first bracket is fixedly supported atop the seatback and exhibits a striker. A second bracket is pivotally supported to the first bracket in a biased direction away from the striker and includes a headrest bun support. A hook is supported upon the second bracket in a first biased direction engaging the striker. A release element associated with the second bracket is biased direction and which, upon being actuated in a second counter-biased direction, engages a projecting portion associated with the hook. A cable is secured at a first end to a fixed location associated with the seat and extends through a redirection location an offset distance from a pivot location of the seatback, the cable securing at a second end to the release element.
Abstract:
An inertial (“INS”)/GPS receiver uses injected alignment data to determine the alignment of the INS sub-system when the receiver is in motion during start-up. The alignment data is determined from parameterized surface information, measured GPS velocity, and a known or predetermined angular relationship between the vehicle on which the receiver is mounted and an inertial measurement reference, or body, frame associated with the accelerometers and gyroscopes of the inertial measuring unit (“IMU”). The parameterized surface information, which provides a constraint, may be the orientation of the surface over which the vehicle that houses the receiver is moving. The receiver uses the initial GPS position to determine the location of the vehicle on the parameterized surface, and thus, the known surface orientation. The receiver then determines the roll, pitch and heading of the vehicle on the surface using the associated GPS velocity vector. Thereafter, the receiver uses the calculated roll, pitch and heading of the vehicle and the known or predetermined angular relationship between the vehicle and the IMU body frame to determine a rotation matrix that relates the IMU body frame to a computation or referenced frame used by the receiver.
Abstract:
The invention provides a system of components in an electronic device is provided. The system comprises: a PCB; a first component mounted to the PCB; a cap located about the first component; a second component; and a platform for the second component. In the system, the platform and the cap cooperate with alignment features such that the platform may be placed on top of the cap at a predetermined location utilizing the alignment features. The invention also provides a method for assembling the device.