Method and system for optical or electrical measurements in disperse fluids

    公开(公告)号:US11478796B2

    公开(公告)日:2022-10-25

    申请号:US16336832

    申请日:2017-10-09

    Abstract: The invention relates to a method of performing an optical or electrical measurement in a sample of a disperse fluid, the sample comprising particles and a fluid. The method comprises the steps of: a) positioning the sample in a microfluidic cavity having a resonance frequency, b) subjecting the sample, in the cavity, to an acoustic standing wave configured for causing the particles to congregate in at least one first region of the cavity, thereby causing the fluid to occupy at least one second region of the cavity, wherein the frequency of the acoustic standing wave is varied between a frequency below the resonance frequency and a frequency above the resonance frequency, and c) performing an optical or electrical measurement in the fluid in at least one of the at least one second region of the cavity. Varying the frequency ensures reproducible results. The invention also relates to a system therefore and a method and system for measuring hematocrit.

    Methods and systems for point-of-care coagulation assays by optical detection

    公开(公告)号:US11079325B2

    公开(公告)日:2021-08-03

    申请号:US14696756

    申请日:2015-04-27

    Abstract: This invention relates to an optical system and method for performing turbidity assay, e.g. coagulation of blood or plasma, comprising a standard optical reference, a sample handling structure, a light source and an optical detection unit. The standard optical reference, such as a fluorophore-doped glass, provides constant optical signal under controlled optical conditions. The sample handling structure, such as a microfluidic system with reaction chamber, can be placed beneath or above the standard optical reference. During operation, the coagulating plasma/blood changes its optical absorbance and reflection properties, which results in changes in optical signal that reaches the optical reading unit. The variation of the optical signal, such as fluorescence signal indicates the kinetics of the turbidity varying process, such as plasma/blood coagulation process. This invention is used for performing turbidity assay with optical system, including photometry system, fluorescence system, Raman Spectroscopy system and so on.

    Total protein measurement using whole blood refractometry

    公开(公告)号:US10648907B2

    公开(公告)日:2020-05-12

    申请号:US16403180

    申请日:2019-05-03

    Abstract: An optical system and method for quantifying total protein in whole blood or other multi-phase liquids and colloidal suspensions uses refractometry without preliminary steps such as cell separation or centrifugation. A refractometer is integrated with a flow cell to enable the refractive index of a flowing sample to be measured based on a substantially cell free boundary layer of the sample that is present under certain flow conditions. Dimensions of the flow cell are selected to produce a cell-free layer in a flow of whole blood in which the cell free layer is thick enough to reduce scattering of light from the refractometer light source. A numerical method is used to compensate for scattering artifacts. The numerical compensation method is based on the slope and width of a peak in the derivative curve of an angular spectrum image of the flowing sample produced by refractometry.

    Total protein measurement using whole blood refractometry

    公开(公告)号:US10302559B2

    公开(公告)日:2019-05-28

    申请号:US16211581

    申请日:2018-12-06

    Abstract: An optical system and method for quantifying total protein in whole blood or other multi-phase liquids and colloidal suspensions uses refractometry without preliminary steps such as cell separation or centrifugation. A refractometer is integrated with a flow cell to enable the refractive index of a flowing sample to be measured based on a substantially cell free boundary layer of the sample that is present under certain flow conditions. Dimensions of the flow cell are selected to produce a cell-free layer in a flow of whole blood in which the cell free layer is thick enough to reduce scattering of light from the refractometer light source. A numerical method is used to compensate for scattering artifacts. The numerical compensation method is based on the slope and width of a peak in the derivative curve of an angular spectrum image of the flowing sample produced by refractometry.

Patent Agency Ranking