Abstract:
A method is provided to easily determine the parameters of a second process for manufacturing from the parameters of a first process. Metrics representative of the differences between the two processes are computed from a number of values of the parameters, which can be measured for the two processes on a calibration layout, or which can be determined from pre-existing values for layouts or reference data for the two processes by an interpolation/extrapolation procedure. The number of metrics is selected so that their combination gives a precise representation of the differences between the two processes in all areas of a design. Advantageously, the metrics are calculated as a product of convolution of the target design and a compound of a kernel function and a deformation function. A reference physical model of the reference process is determined. A sizing correction to be applied to the edges of the design produced by the reference process is calculated. It is then converted, totally or partially, into a dose correction.
Abstract:
A method of generating data relative to the writing of a pattern by electronic radiation initially includes the provision of a pattern to be formed which form the work pattern with a single external envelope. The work pattern is broken down into a set of elementary outlines, each including a single external envelope. A set of insolation conditions is defined to model each elementary outline. An irradiated simulation pattern is calculated from the sets of insolation conditions associated with the sets of elementary outlines. The simulation pattern is compared with the pattern to be formed. If the simulation pattern is not representative of the pattern to be formed, shift vectors are calculated. The shift vectors are representative of different intervals existing between the two patterns. The external envelope of the pattern to be formed is modified from displacement vectors determined from the shift vectors. A new iteration is carried out.