Abstract:
A substrate processing method and apparatus to create a sacrificial masking layer is disclosed. The layer is created by providing a first precursor selected to react with one of a radiation modified and unmodified layer portion and to not react with the other one of the radiation modified and unmodified layer portion on a substrate in a reaction chamber to selectively grow the sacrificial masking layer.
Abstract:
A substrate processing method and apparatus to create a sacrificial masking layer is disclosed. The layer is created by providing a first precursor selected to react with one of a radiation modified and unmodified layer portion and to not react with the other one of the radiation modified and unmodified layer portion on a substrate in a reaction chamber to selectively grow the sacrificial masking layer.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
The current disclosure relates to a vapor deposition assembly for depositing material on a substrate. The vapor deposition assembly comprises a treatment chamber for treating susceptors from a deposition chamber that comprises multiple, moveable susceptors. The assembly further comprises a transfer system configured and arranged to move a susceptor between the deposition chamber and the treatment chamber. The disclosure further relates to a method of cleaning as susceptor and to a susceptor treatment apparatus.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
A method for forming a conformal, homogeneous dielectric film includes: forming a conformal dielectric film in trenches and/or holes of a substrate by cyclic deposition using a gas containing a silicon and a carbon, nitrogen, halogen, hydrogen, and/or oxygen, in the absence of a porogen gas; and heat-treating the conformal dielectric film and continuing the heat-treatment beyond a point where substantially all unwanted carbons are removed from the film and further continuing the heat-treatment to render substantially homogeneous film properties of a portion of the film deposited on side walls of the trenches and/or holes and a portion of the film deposited on top and bottom surfaces of the trenches and/or holes.