Abstract:
A wavelength-tunable external cavity laser comprises a semiconductor optical amplifier chip and a laser external cavity, the laser external cavity comprising a grid filter, a phase adjustor and a silicon-based micro-ring chip, the grid filter and the silicon-based micro-ring chip constituting a wavelength-tunable optical filter which implements wavelength tuning by spectral tuning of the grid filter and/or the silicon-based micro-ring chip. A micro-ring filter in the silicon-based micro-ring chip of the tunable external-cavity laser is manufactured by adopting a mature silicon light technology, which can greatly reduce a manufacturing difficulty of the adjustable filter, and reduce the manufacturing cost of a device. An existing external-cavity adjustable technology platform may be used for smooth transition, so as to improve the degree of integration of this type of device and simplify a preparation process.
Abstract:
Device and method are provided to align and bond a lens array to a PD array with high precision, which can implement aligning and bonding of the lens array automatically. A telescopic rod of the stepping actuator is adjusted until photosensitive areas of the PD array form a clear image on the image acquisition CCD through the lens array, an adjusted distance h1 of the telescopic rod is recorded, and a position coordinate (xn, yn) of center of each circular photosensitive area in the image may be obtained, and a slope k1 of a line connecting the centers of the photosensitive areas is calculated. The telescopic rod is adjusted again, and a slope k2 of a line connecting the centers of the apertures of the lens array is calculated. Based on calculated values Δxn, Δyn, arctan(k1)-arctan(k2), the high-resolution adjustment stage is adjusted to adjust position of the lens array.
Abstract:
A silicon waveguide coupling alignment apparatus includes a fine adjustment bracket, a stress releasing clamp and a silicon photonic integrated chip force sensor. A silicon photonic integrated chip is fixed on the silicon photonic integrated chip force sensor, at least a part of an optical fiber to be coupled is fixed on one end of the stress releasing clamp, the stress releasing clamp is arranged on the fine adjustment bracket, an end surface of the optical fiber to be coupled is aligned with an end surface of the silicon photonic integrated chip by adjusting a position of the fine adjustment bracket, and a cushioning mechanism is arranged within the stress releasing clamp to cushion a collision force in a direction perpendicular to the end surface of the optical fiber to be coupled. The contact force imposed by the optical fiber on the end surface of the chip can be released by the clamp.
Abstract:
A performance testing device for a multi-channel tunable laser, comprising a collimating and coupling lens, a first beam splitter, a power testing unit, a side-mode suppression ratio testing unit, a wavelength testing unit and a control and drive unit, the power testing unit being positioned in a reflection path of the first beam splitter, the wavelength testing unit being positioned in a transmission path of the first beam splitter, the side-mode suppression ratio testing unit being positioned in a reflection path of the second beam splitter, the control and drive unit being in a control connection with the power testing unit, the side-mode suppression ratio testing unit and the wavelength testing unit. The performance testing device has a simple structure, a low cost, and is convenient to use
Abstract:
A silicon waveguide coupling alignment apparatus includes a fine adjustment bracket, a stress releasing clamp and a silicon photonic integrated chip force sensor. A silicon photonic integrated chip is fixed on the silicon photonic integrated chip force sensor, at least a part of an optical fiber to be coupled is fixed on one end of the stress releasing clamp, the stress releasing clamp is arranged on the fine adjustment bracket, an end surface of the optical fiber to be coupled is aligned with an end surface of the silicon photonic integrated chip by adjusting a position of the fine adjustment bracket, and a cushioning mechanism is arranged within the stress releasing clamp to cushion a collision force in a direction perpendicular to the end surface of the optical fiber to be coupled. The contact force imposed by the optical fiber on the end surface of the chip can be released by the clamp.
Abstract:
Device and method are provided to align and bond a lens array to a PD array with high precision, which can implement aligning and bonding of the lens array automatically. A telescopic rod of the stepping actuator is adjusted until photosensitive areas of the PD array form a clear image on the image acquisition CCD through the lens array, an adjusted distance h1 of the telescopic rod is recorded, and a position coordinate (xn, yn) of center of each circular photosensitive area in the image may be obtained, and a slope k1 of a line connecting the centers of the photosensitive areas is calculated. The telescopic rod is adjusted again, and a slope k2 of a line connecting the centers of the apertures of the lens array is calculated. Based on calculated values Δxn, Δyn, arctan(k1)−arctan(k2), the high-resolution adjustment stage is adjusted to adjust position of the lens array.
Abstract:
A coupling device of an optical waveguide chip and a PD array lens. The coupling device comprises a waveguide chip, a PD array, a heat sink, a waveguide gasket and a substrate. The waveguide gasket and the heat sink are located on the substrate, the PD array is located on the heat sink, and the waveguide chip is provided on the waveguide gasket. A reflection prism is provided in an optical path between the waveguide chip and the PD array. The output light of the waveguide chip is reflected by the reflection prism, and then is received by the PD array. A lens array having a convergence effect is provided in the optical path between the waveguide chip and the PD array. The coupling device can reduce costs and has a simple structure, the assembly process thereof is easy to realize, and the photoelectric conversion efficiency thereof is high.
Abstract:
Disclosed are a signal demodulation method and apparatus, a computer storage medium and a device. The method comprises: acquiring a signal to be demodulated; performing direct current blocking and bias processing on the signal to obtain a processed signal; comparing the processed signal with a preset decision signal, and obtaining a demodulation signal according to a comparison result. Thus, direct current blocking processing on a modulation signal can avoid dynamic changes of DC components caused by average power changes of carrier signals, avoiding wrongly demodulating the modulation signal. Bias processing after the direct current blocking on the modulation signal can further realize an AC signal decision without introducing a negative pressure source. A real-time decision on the processed signal via the preset decision signal can dynamically adapt the average power of carrier signals, thereby ensuring to correctly demodulate the modulation signal and improving the accuracy of demodulation results.
Abstract:
An arrayed waveguide grating based hybrid integrated laser has an adjustable external cavity. The waveguide includes a semiconductor gain die and an optical waveguide chip. The optical waveguide chip includes an arrayed waveguide grating and an arrayed waveguide reflection-controllable component. A resonant cavity is formed by the output end reflection-controllable arrayed waveguide grating chip and the semiconductor gain die. An output wavelength of the laser can be adjusted by changing a driving condition of the reflection-controllable component. The output wavelength is determined by a center wavelength of each channel of the arrayed waveguide grating.
Abstract:
A debugging method and device for an operating point voltage of a parallel MZI electro-optical modulator. The parallel MZI electro-optical modulator comprises a Parent MZI (2) formed by a parallel connection of a Child MZI (3) in an I path and a Child MZI (4) in a Q path. The debugging method comprises: fixing a bias voltage of one Child MZI of the Child MZI (3) in the I path and the Child MZI (4) in the Q path; gradually adjusting a bias voltage of the other Child MZI, testing a parent extinction ratio Per of the Parent MZI (2) when different bias voltages are applied, and finding a corresponding bias voltage as an operating point voltage of the other Child MZI when the Per of the Parent MZI (2) reaches a minimum value, and then finding a corresponding bias voltage as an operating point voltage of the one Child MZI when the Per of the Parent MZI (2) reaches a minimum value; setting the bias voltages of the two Child MZIs as operating point voltages corresponding to the two Child MZIs respectively, adjusting a phase modulation voltage of the Parent MZI (2) until an output effect of the parallel MZI electro-optical modulator reaches the best, and determining the phase modulation voltage of the Parent MZI (2). The method and device are simple; and the debugging process thereof is fast and efficient.