Abstract:
A cleaning method for a UV chamber involves providing a first cleaning gas, a second cleaning gas, and a purge gas to one or more openings in the chamber. The first cleaning gas may be an oxygen containing gas, such as ozone, to remove carbon residues. The second cleaning gas may be a remote plasma of NF3 and O2 to remove silicon residues. The UV chamber may have two UV transparent showerheads, which together with a UV window in the chamber lid, define a gas volume proximate the UV window and a distribution volume below the gas volume. A purge gas may be flowed through the gas volume while one or more of the cleaning gases is flowed into the distribution volume to prevent the cleaning gases from impinging on the UV transparent window.
Abstract:
Embodiments described herein provide a method of forming a low-k carbon-doped silicon oxide (CDO) layer having a high hardness by a plasma-enhanced chemical vapor deposition (PECVD) process. The method includes providing a carrier gas at a carrier gas flow rate and a CDO precursor at a precursor flow rate to a process chamber. A radio frequency (RF) power is applied at a power level and a frequency to the CDO precursor. The CDO layer is deposited on a substrate within the process chamber.
Abstract:
A cleaning method for a UV chamber involves providing a first cleaning gas, a second cleaning gas, and a purge gas to one or more openings in the chamber. The first cleaning gas may be an oxygen containing gas, such as ozone, to remove carbon residues. The second cleaning gas may be a remote plasma of NF3 and O2 to remove silicon residues. The UV chamber may have two UV transparent showerheads, which together with a UV window in the chamber lid, define a gas volume proximate the UV window and a distribution volume below the gas volume. A purge gas may be flowed through the gas volume while one or more of the cleaning gases is flowed into the distribution volume to prevent the cleaning gases from impinging on the UV transparent window.
Abstract:
Methods for detecting valve leakage and apparatus for the same are provided. In one embodiment, a method for detecting a valve leakage includes flowing a gas through a diverter valve, determining a pressure in a gas source provided to the diverter valve, comparing the determined pressure value with an expected pressure value, and generating a signal in response to the comparison.
Abstract:
Embodiments of the disclosure generally provide multi-layer dielectric stack configurations that are resistant to plasma damage. Methods are disclosed for the deposition of thin protective low dielectric constant layers upon bulk low dielectric constant layers to create the layer stack. As a result, the dielectric constant of the multi-layer stack is unchanged during and after plasma processing.
Abstract:
A method for dielectric filling of a feature on a substrate yields a seamless dielectric fill with high-k for narrow features. In some embodiments, the method may include depositing a metal material into the feature to fill the feature from a bottom of the feature wherein the feature has an opening ranging from less than 20 nm to approximately 150 nm at an upper surface of the substrate and wherein depositing the metal material is performed using a high ionization physical vapor deposition (PVD) process to form a seamless metal gap fill and treating the seamless metal gap fill by oxidizing/nitridizing the metal material of the seamless metal gap fill with an oxidation/nitridation process to form dielectric material wherein the seamless metal gap fill is converted into a seamless dielectric gap fill with high-k dielectric material.
Abstract:
Embodiments described herein provide a method for sealing a porous low-k dielectric film. The method includes forming a sealing layer on the porous low-k dielectric film using a cyclic process. The cyclic process includes repeating a sequence of depositing a sealing layer on the porous low-k dielectric film and treating the sealing layer until the sealing layer achieves a predetermined thickness. The treating of each intermediate sealing layer generates more reactive sites on the surface of each intermediate sealing layer, which improves the quality of the resulting sealing layer.
Abstract:
Embodiments of the invention generally provide methods for sealing pores at a surface of a dielectric layer formed on a substrate. In one embodiment, the method includes exposing a dielectric layer formed on a substrate to a first pore sealing agent, wherein the first pore sealing agent contains a compound with a general formula CxHyOz, where x has a range of between 1 and 15, y has a range of between 2 and 22, and z has a range of between 1 and 3, and exposing the substrate to UV radiation in an atmosphere of the first pore sealing agent to form a first sealing layer on the dielectric layer.
Abstract translation:本发明的实施方案通常提供了在形成在基底上的电介质层的表面处密封孔的方法。 在一个实施方案中,该方法包括将形成在基底上的电介质层暴露于第一孔密封剂,其中第一孔密封剂含有具有通式C x H y O z的化合物,其中x具有1至15的范围,y具有 在2和22之间的范围,z具有1和3之间的范围,并且在第一孔密封剂的气氛中将基底暴露于UV辐射,以在介电层上形成第一密封层。