Abstract:
A nozzle assembly that produces a cone-shaped spray pattern of entrained liquid droplets is disclosed. The nozzle includes an ultrasonic atomizer for atomizing a liquid on an atomizing surface located at the end of an atomizing stem. The nozzle assembly is supplied pressurized air that is directed to the atomizing surface by intercommunicating ports, chambers and/or channels. To provide the cone-shaped spray pattern, the ports, chambers and/or channels cause or direct the pressurized gas to rotate about the atomizing stem. When the rotating pressurized gas exits the nozzle assembly via proximate the atomizing surface, atomized liquid droplets become entrained in the gas. The rotating pressurized gas propels the droplets forward and moves at least some droplets circumferentially outward in the cone-shaped spray pattern. In various embodiments, the pressure of the gas can be adjusted to control the size and shape of the cone-shaped pattern and the distribution of droplets.
Abstract:
A modular automatic spray gun manifold is provided. The manifold includes a plurality of spray gun modules arranged in an array in laterally spaced relation from each other. A junction element is arranged at an upstream end of the manifold. The junction element includes a liquid supply connection and a pressurized air connection. A first support assembly is arranged between the junction element and a first spray gun module in the spray gun module array for supporting the first spray gun module relative to the junction element. The first support assembly includes a plurality of fluid conduits for supplying fluid to the first spray gun module. The fluid conduits in the first support assembly communicate with the liquid supply and pressurized air supply connections of the junction element. A second support assembly is arranged between each adjacent pair of spray gun modules in the array of spray gun modules for supporting the adjacent pair of spray gun modules relative to each other. Each second support assembly includes a plurality of fluid conduits for communicating fluid between the adjacent spray gun modules. One or more retaining elements secure the spray gun modules, support assemblies and junction plate in assembled relation.
Abstract:
A shower header type spraying device having an elongated spray header with a plurality of laterally-spaced nozzles and an elongated cleaning brush assembly supported in said spray header for cleaning inlet apertures of said spray nozzles. The cleaning brush assembly includes an axially extending rod and a plurality of brush elements each mounted on the rod by means of a self-aligning member that has an arcuate shape corresponding to the outer circumference of the rod for orienting a row of brush bristles of the brush element in predetermined relation to the elongated axis of the rod. The illustrated brush rod assembly includes a plurality of brush rod segments each having a self-aligning coupling at an axial end thereof such that joining of adjacent rod segments automatically orients the brush elements in predetermined angular offset relation to each other.
Abstract:
The nozzle effects three stages of liquid atomization. The first stage is carried out by means of a single liquid orifice and an expansion chamber containing an impingement pin. A high velocity stream of liquid is discharged through the liquid orifice and is broken-up upon striking the flat end of the impingement pin. The second stage is produced by an air guide which reduces in area to form jets of air into a high velocity annular air curtain, the curtain passing through the liquid orifice in surrounding relation with the liquid stream and striking the broken-up flow of the first stage to atomize the particles. The mixture is then allowed to expand in the expansion chamber to reduce the tendency of the liquid particles in the atomized mixture from commingling together and reforming into larger particles. The third stage is effected by the expansion chamber and by multiple discharge orifices. The mixture is sprayed from the expansion chamber through the multiple orifices and, upon being discharged into the atmosphere, the particles are atomized further due to the release of pressure formed inside the expansion chamber.
Abstract:
Apparatus in which water and liquid detergent meet in a venturi chamber to be commingled there, the detergent being drawn into the venturi by the condition of unbalanced (lowered) pressure there resulting from the velocity of the water flowing through the venturi throat. Compressed air is introduced into a nozzle in communication with the venturi, and the commingled water, detergent, and air are then discharged for use in the form of a foam. The water inlet includes a removable insert separate from the venturi, the upstream end of the insert being exposed for direct accessibility for a mounting tool, and an annular chamber located upstream from the discharge end of the venturi outlet initially receives the compressed air which is then caused to be discharged in an annular condition about the commingled detergent and water flow.
Abstract:
An external mix air assisted spray nozzle assembly having a nozzle body with pressurized liquid and air passages, an air cap having a central opening in coaxial relation to a liquid discharge orifice of the nozzle body for discharging an annular air stream in surrounding relation to liquid discharging from the discharge orifice, and the air cap has a pair of opposed thin walled cylindrical members projecting in opposed relation to each other for directing pressurized air to atomize and shape the discharging liquid spray pattern, while minimizing undesirable build up of solids on the terminal ends of the projecting cylindrical members.
Abstract:
A spray nozzle assembly that utilizes ultrasonic atomization techniques to atomize a liquid into a cloud of small or fine droplets is disclosed. The nozzle assembly also can use various air or gas atomizing technologies to propel the generally directionless droplet cloud toward a surface or substrate to be coated. The propelled droplet cloud may at this state have a conical or cone-shaped spray pattern. Additional air or gas atomizing technologies can be utilized to shape the propelled droplet cloud into a flattened fan-shaped spray pattern that can be usable in various industrial applications. The shape of the spray pattern and the distribution of droplets within the pattern can be adjusted by manipulation of the gas pressure used in gas atomization.
Abstract:
A spray head having a body provided with separate inlets for two fluids, the inlets having a common longitudinal axis and being in end abutting relation. One inlet leads to a chamber for receiving one of the fluids, the chamber being provided with means through which the fluid is discharged, and the other inlet leads to a post, manufactured simultaneously with the manufacture of the chamber and integral with the body. The post is located in the chamber and is hollow so that the other fluid is discharged therefrom by the aspirating action of the first, and the two fluids are commingled, the second fluid being atomized by the first. Various nozzle structures are disclosed from which the commingled discharges flow, the ultimate discharge being in the form of a cone, or a flat fan by the employment of opposed supplemental fluid jets, or non-circular in formation as shaped by appropriate terminus aperturing, or flattened and diverted by impact with an impingement surface in the path of the discharge.
Abstract:
A spray nozzle assembly that utilizes ultrasonic atomization techniques to atomize a liquid into a cloud of small or fine droplets is disclosed. The nozzle assembly also can use various air or gas atomizing technologies to propel the generally directionless droplet cloud toward a surface or substrate to be coated. The propelled droplet cloud may at this state have a conical or cone-shaped spray pattern. Additional air or gas atomizing technologies can be utilized to shape the propelled droplet cloud into a flattened fan-shaped spray pattern that can be usable in various industrial applications. The shape of the spray pattern and the distribution of droplets within the pattern can be adjusted by manipulation of the gas pressure used in gas atomization.
Abstract:
A method and apparatus for diminishing display transients and jitter. The method and system disclosed utilizes prior illumination and position histories in displaying and illuminating representations, and elements comprising the representations, on the display. Recognizing repeated representations, finding their prior and current positions, and determining if the difference in position is over a threshold value, diminishes the jitter by displaying the representation in the new position if over the threshold value, or, if it is not over the threshold value, then displaying it in the prior location. The illumination of an element at an intensity, which is based on prior illuminations and/or intensities of the element, diminishes the transients by avoiding flashing or flicker of transient illuminations.