Abstract:
A valve train assembly includes a first exhaust valve, a second exhaust valve, and a valve bridge including a main body and a lever rotatably coupled to the main body, the main body configured to engage the first exhaust valve, and the lever configured to engage the second exhaust valve. An exhaust valve rocker arm assembly is configured to selectively open the first and second exhaust valves, the exhaust valve rocker arm assembly including an exhaust valve rocker arm with a hydraulic lash adjuster (HLA) assembly coupled thereto, the HLA assembly in contact with the valve bridge main body. An engine brake rocker arm assembly is configured to selectively open the second exhaust valve and including an engine brake rocker arm with a combined HLA and added motion capsule coupled thereto. The combined HLA and added motion capsule is configured to selectively engage and rotate the lever.
Abstract:
An exhaust valve rocker arm assembly selectively opening first and second exhaust valves. The assembly includes an exhaust rocker arm and a valve bridge operably associated with the rocker arm and including a main body and a lever rotatably coupled to the main body. The main body is configured to engage the first exhaust valve, and the lever is configured to engage the second exhaust valve.
Abstract:
A switching rocker arm constructed in accordance to one example of the present disclosure includes an outer arm, an inner arm, a latch, an inner roller and a first torsion spring. The outer arm has a pair of outer arm portions and a connecting arm extending therebetween. The connecting arm includes an outwardly extending tab. The inner arm is pivotally secured to the outer arm and has an outwardly extending protrusion. The latch is configured to selectively extend to engage the outwardly extending tab. The inner roller and bearing is configured on the inner arm. The first torsion spring is disposed between the outer arm and the inner arm. A first end is engaged to the connecting arm and is restrained from outward movement by the outer arm and restrained from inward movement by the outwardly extending tab. A second end is restrained by the outwardly extending protrusion.
Abstract:
Air to fuel ratio management comprises sensing a power output request for the engine and determining a fuel-efficient air to fuel ratio. A current air to fuel ratio is sensed in one or both of an intake manifold and an exhaust manifold connected to the engine. An air to fuel ratio adjustment is determined based on the fuel-efficient air to fuel ratio and based on the current air to fuel ratio. An in-cylinder exhaust gas recirculation technique is selected. The in-cylinder exhaust gas recirculation technique adjusts an oxygen and particulate content of exhaust gas resulting from combustion. A number of cylinders of the multiple-cylinder engine are selected to implement the in-cylinder exhaust gas recirculation technique. The intake valves and the exhaust valves are controlled to adjust the oxygen and particulate content of the exhaust gas by applying a second compression stroke of the respective reciprocating pistons to the exhaust gas.
Abstract:
A system for controlling variable valve actuation in an automobile engine. A first cam has a first lift profile and a second cam has a second lift profile. A rocker arm assembly engages the cams having a first arm for riding on the first cam, and a second arm for riding on the second cam. The second arm has an activatable latch capable of securing the second arm to the first arm when latched. When the first arm is secured to the second arm, the rocker arm assembly achieves a first lift profile and when the first arm is not secured to the second arm, the rocker arm assembly achieves a second lift profile. A non-contact sensor mounted adjacent the rocker arm assembly is adapted to monitor and create data indicative of whether the first arm is secured to the second arm.
Abstract:
An exhaust valve rocker arm assembly includes an exhaust rocker arm and a valve bridge operably associated with the rocker arm. The valve bridge includes a main body and a lever rotatably coupled to the main body. The main body is configured to engage the first exhaust valve, and the lever is configured to engage the second exhaust valve.
Abstract:
A modified rocker assembly having an offset end is designed to be used in engine heads having an obstruction that would not allow a switching rocker arm to be used. The modified rocker assembly is described having an obstructed side and a non-obstructed side. The rocker assembly has an outer structure with a first end, and an inner rocker structure fitting within the outer structure, the inner structure also having a first end. The modified rocker assembly has an axle pivotally connecting the first ends of inner structure to the outer structure, such that the inner structure may rotate within the outer structure around the axle. At least one torsion spring on one side of axle, rotationally biases the inner structure relative to the outer structure. The outer structure, on the obstructed side as it extends from the second end toward the first end, is offset toward the non-obstructed side creating the first offset portion to provide additional clearance on the obstructed side. This design allows the modified rocker arm to fit into an engine head having an obstruction on its obstruction side.
Abstract:
A durable system is disclosed for controlling variable valve actuation of an engine valve corresponding to a cylinder of an automobile engine. The system is designed to have a durability that exceeds the expected life of a conventional automobile engine. The system includes first crowned cam having a first lift profile, a second crowned cam having a second lift profile, and a rocker arm assembly. The rocker assembly includes a first arm having an end connected to said engine valve, having a high impact roller following the first crowned cam operating the engine valves according to a first lift profile. The rocker arm assembly also includes a second arm having slider pads riding on the second crowned cam to operate said engine valve according to a second lift profile. The slider pads have a sliding surface covered with an impact-resistant multilayer coating with its outermost coating being a wear-resistant coating. A latch having adjustable latch lash secures the second arm relative to the first arm when in a latched position causing the valve to operate according to a second lift profile when the latch is in a latched position, and the valve is operated according to a first lift profile when the latch is not in a latched position.
Abstract:
A combined exhaust and engine brake rocker arm assembly configured to selectively open first and second exhaust valves, includes a rocker arm body, an exhaust rocker arm assembly formed in the rocker arm body, and an engine brake rocker arm assembly formed in the rocker arm body and configured to operate in a collapse mode and a rigid mode. The exhaust rocker arm assembly is configured to selectively engage a valve bridge to open the first and second exhaust valves, and the engine brake rocker arm assembly is configured to selectively engage the valve bridge to open only the first exhaust valve.
Abstract:
A method of providing a rocker arm set for a valvetrain includes providing a first rocker arm configured as a switching rocker arm for a first intake valve, and providing a second rocker arm configured as a fixed rocker arm for a second intake valve, the second rocker arm operating in a normal Otto cycle mode. The first rocker arm operates in a late intake valve closing (LIVC) mode where the first rocker arm is configured to close the first intake valve later than the second intake valve.