Abstract:
A method of preparing a crosslinked, collagen-based wound care dressing is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for hernia repair prosthetics and surgical incision closure members, prepared using the method above.
Abstract:
A method of preparing a crosslinked, collagen-based wound care dressing is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for hernia repair prosthetics and surgical incision closure members, prepared using the method above.
Abstract:
A method of treating a tubular medical device with a biomolecule comprises the steps of: a) providing a polyolefin tubular substrate forming a tubular medical device; b) cleaning the tubular polyolefin substrate; c) exposing the tubular polyolefin substrate to a reactive gas containing at least one of acrylic acid and siloxane and to plasma energy to yield a plasma-deposited coating on at least one surface of the tubular polyolefin substrate; and d) attaching a biomolecule to the polyolefin substrate following formation of the plasma-deposited coating on at least one surface of the tubular polyolefin substrate, and wherein the biomolecule is at least one of an antibacterial agent, antimicrobial agent, anticoagulant, heparin, antithrombotic agent, platelet agent, anti-inflammatory, enzyme, catalyst, hormone, growth factor, drug, vitamin, antibody, antigen, protein, nucleic acid, dye, a DNA segment, an RNA segment, protein, and peptide.
Abstract:
A method of preparing a crosslinked, collagen-based wound care dressing is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for hernia repair prosthetics and surgical incision closure members, prepared using the method above.
Abstract:
An apparatus for stimulation of collateral development in ischemic cardiac regions comprises a mechanism for fluid coupling of the left ventricle of the heart to the anterior interventricular vein to stimulate collateral development in ischemic regions. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes a control of the diastolic/systolic pressure in the venous system to be within about 20-50 mmHg. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes inserting a transmyocardial conduit into the left ventricle and a tri-directional coupler attached to the anterior interventricular vein. An associated method for stimulation of collateral development in ischemic cardiac regions via the fluid coupling of the left ventricle of the heart to the anterior interventricular vein is disclosed.
Abstract:
A method of treating a tubular medical device with a biomolecule comprises the steps of: a) providing a polyolefin tubular substrate forming a tubular medical device; b) cleaning the tubular polyolefin substrate; c) exposing the tubular polyolefin substrate to a reactive gas containing at least one of acrylic acid and siloxane and to plasma energy to yield a plasma-deposited coating on at least one surface of the tubular polyolefin substrate; and d) attaching a biomolecule to the polyolefin substrate following formation of the plasma-deposited coating on at least one surface of the tubular polyolefin substrate, and wherein the biomolecule is at least one of an antibacterial agent, antimicrobial agent, anticoagulant, heparin, antithrombotic agent, platelet agent, anti-inflammatory, enzyme, catalyst, hormone, growth factor, drug, vitamin, antibody, antigen, protein, nucleic acid, dye, a DNA segment, an RNA segment, protein, and peptide.
Abstract:
A method for stimulation of collateral development in ischemic cardiac regions comprises the fluid coupling of the left ventricle of the heart to the anterior interventricular vein to stimulate collateral development in ischemic regions. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes a control of the diastolic/systolic pressure in the venous system to be within about 20-50 mmHg. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes inserting a transmyocardial conduit into the left ventricle and a tri-directional coupler attached to the anterior interventricular vein. An associated apparatus for stimulation of collateral development in ischemic cardiac regions via the fluid coupling of the left ventricle of the heart to the anterior interventricular vein is disclosed.
Abstract:
A method for stimulation of collateral development in ischemic cardiac regions comprises the fluid coupling of the left ventricle of the heart to the anterior interventricular vein to stimulate collateral development in ischemic regions. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes a control of the diastolic/systolic pressure in the venous system to be within about 20-50 mmHg. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes inserting a transmyocardial conduit into the left ventricle and a tri-directional coupler attached to the anterior interventricular vein. An associated apparatus for stimulation of collateral development in ischemic cardiac regions via the fluid coupling of the left ventricle of the heart to the anterior interventricular vein is disclosed.
Abstract:
A flow-based biological testing platform comprises a stationary base; a reciprocating base mounted on the stationary base, configured for reciprocating motion on the base; and at least one flexible tubular test loop coupled to both the stationary and the reciprocating base, wherein each test loop is configured to be selectively filled with a biologic fluid, and wherein each test loop includes at least one check valve mounted within the test loop allowing flow in a single flow direction within the test loop, and a fluid loading and removal system attached to the stationary base allowing fluid to be supplied to and withdrawn from the flexible tubular test loop; wherein reciprocation of the reciprocating base induces fluid flow in a single direction within each flexible test loop.
Abstract:
A method of preparing a crosslinked, collagen-based medical scaffold is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for wound care dressings, hernia repair prosthetics, and surgical incision closure members, prepared using the method above.