Abstract:
A plasma polymerisation method for coating a substrate with a polymer layer, which method includes: providing a substrate to be coated within a plasma chamber; introducing a flow of a first polymer precursor to the plasma chamber; applying a power at a level greater than zero Watts (W) and converting the first polymer precursor to a first polymer precursor plasma; exposing the substrate to the first polymer precursor plasma; introducing a flow of a second polymer precursor to the plasma chamber; applying a power at a level greater than zero Watts (W) and converting the second polymer precursor to a second polymer precursor plasma; and exposing the substrate to the second polymer precursor plasma, wherein exposing the substrate to the first polymer precursor plasma forms a first polymer layer thereon and exposing the substrate to the second polymer precursor plasma forms a second polymer layer thereon, characterised by maintaining the power at a level greater than zero Watts (W) between exposing the substrate to the first polymer precursor plasma and exposing the substrate to the second polymer precursor plasma.
Abstract:
The present invention concerns a method comprising the steps of: introducing a substrate comprising a surface to be coated in a low-pressure reaction chamber; exposing said surface to a plasma during a treatment period within said reaction chamber; ensuring a stable plasma ignition by applying a power input, characterized in that the power input is continuously strictly higher than zero Watt (W) during said treatment period and comprises at least a lower limit power and at least an upper limit power strictly larger than said lower limit power, thereby obtaining a substrate with a coated surface. The present invention further concerns an apparatus for treating a substrate with a low-pressure plasma process and a substrate treated as such.
Abstract:
The present invention concerns a method comprising the steps of: introducing a substrate comprising a surface to be coated in a low-pressure reaction chamber; exposing said surface to a plasma during a treatment period within said reaction chamber; ensuring a stable plasma ignition by applying a power input, characterized in that the power input is continuously strictly higher than zero Watt (W) during said treatment period and comprises at least a lower limit power and at least an upper limit power strictly larger than said lower limit power, thereby obtaining a substrate with a coated surface. The present invention further concerns an apparatus for treating a substrate with a low-pressure plasma process and a substrate treated as such.