Abstract:
An apparatus (100, 300, 700) is described, comprising: a linear ion trap (102) comprising two pairs of pole electrodes and a radiofrequency, RF, electrical potential supply (117) configured to apply respective RF waveforms to the pairs of pole electrodes, thereby forming a RF trapping field component to trap analyte ions (116) radially in a trapping region (115) of the linear ion trap for processing of the analyte ions (116) therein; a charged particle source (101) comprising a pulse valve (103), a conduit (106, 107), having an entrance in fluid communication therewith and an exit, wherein the conduit (106, 107) extends in the direction of the trapping region (115), and a discharge device (108) electrically coupled to an electrical potential supply (109) and disposed between the entrance and the exit of the conduit (106, 107), wherein the pulse valve (103) is configured to release a gas pulse from a gas supply into the entrance of the conduit (106, 107) and wherein the electrical potential supply (109) is configured to apply a high voltage to the discharge device (108) to generate a discharge (110) in the gas pulse in the conduit (106, 107), thereby generating charged particles (114) from the gas and accelerating the generated charged particles in the direction of the trapping region (115). A method is also described.
Abstract:
Techniques are provided for generating charged droplets of liquid entrained within a gas flow within a vacuum chamber and for controlling the gas flow. The gas flow with the entrained charged droplets of liquid is jetted into the vacuum chamber along a predetermined jetting axis. The gas jet is received within a gas conduit housed within the vacuum chamber and having a conduit bore coaxial with the predetermined jetting axis. The received gas jet is caused to be restrained to form a laminar gas flow entrained with charged droplets inside of the gas conduit for guiding the entrained charged droplets therealong.