Abstract:
A fluid control device for mixing liquids, includes at least: a monolithic base body; and a plurality of micro holes disposed in the base body. Also, the micro holes in a flow channel group α that configures a specific group have opening portions in a region A and a region B on surfaces being outer surfaces of the base body, the micro holes in a flow channel group β (n) that configures the other specific group have opening portions in the region A and a region C (n) on the surfaces being outer surfaces of the base body, and in the base body, the micro holes are disposed apart from the micro holes belonging to the different flow channel group throughout entire lengths. Here, the n refers to a natural number.
Abstract:
A base body includes: a base member; a channel provided in the base member, the channel having an inner wall surface and flowing a fluid; a fine vacuum hole provided in the inner wall, the fine vacuum hole causing the channel to communicate the outside of the base member other and having an opening; and a slow flow portion disposed at a position close to the opening of the fine vacuum hole in the inner wall surface, the slow flow portion slows a flow of the fluid, wherein at least a portion that configures the fine vacuum hole in the base member is formed of a single member.
Abstract:
An interposer substrate of the invention includes: a single substrate having a first main surface and a second main surface; and a plurality of through-hole interconnections having first portions formed so as to extend in parallel with each other and connecting the first main surface to the second main surface, wherein the through-hole interconnections adjacent to each other are provided so that ideal axes are parallel to each other with a distance therebetween, and the ideal axes extend perpendicular to at least one of the first main surface and the second main surface and penetrate through centers of the first portions.
Abstract:
A method of manufacturing a microfluidic chip includes: irradiating, with a laser light, an area to be provided with a valley for storing a fluid on a surface of a substrate so as to form a modified region having a periodic pattern formed in a self-organizing manner in a light-collecting area of the laser light, the laser light having a pulse width for which the pulse duration is on the order of picoseconds or less; carrying out an etching treatment on the substrate in which the modified region is formed, removing at least some of the modified portion so as to provide the valley, and forming a periodic structure having a plurality of groove portions along one direction which have a surface profile based on the periodic pattern on at least a bottom surface of the valley; and forming a metal layer that covers the periodic structure of the bottom surface.
Abstract:
An apparatus forms an electroconductive substance in micro holes, the apparatus introduces a fluid, that includes at least a metal complex dissolved in a supercritical fluid or a subcritical fluid, into a reaction chamber including a first space and a second space, allows a planar substrate to be disposed in the fluid that continuously moves in a specific direction in the reaction chamber. A second surface of the substrate is vertical to the specific direction in which the fluid that is introduced into the first space moves; the substrate is supported throughout the entire first surface so that the fluid travels in the micro holes of the substrate from the second surface toward the first space of the substrate; and a support member including a fine communication hole through which the fluid passes toward the second space is disposed.
Abstract:
Provided is a device packaging structure including: an interposer substrate including a substrate, and a plurality of through-hole interconnections formed inside a plurality of through-holes passing through the substrate from a first main surface toward a second main surface, the first main surface being one main surface of the substrate, the second main surface being the other main surface thereof; a first device which includes a plurality of electrodes and is arranged so that these electrodes face the first main surface; and a second device which includes a plurality of electrodes of which an arrangement is different from an arrangement of each of the electrodes of the first device, and is arranged so that these electrodes face the second main surface.
Abstract:
A method of manufacturing a substrate including a micro hole, includes: setting a scanning rate (μm/sec) of pulsed laser light to 1×103 to 4000×103 μm/sec; adjusting a repetition rate (Hz) of the laser light so that a pulse pitch (μm) represented by the following Formula (1) is 0.08 to 0.8 μm; scanning the inside of the substrate with the focal point into which the laser light is collected, thereby forming a modified region having a lowered resistance to etching, at a region through which the focal point passed or at an adjacent region thereof; and forming a micro hole in the substrate by removing the modified region by an etching treatment. pulse pitch (μm)={the scanning rate (μm/sec) of the laser light}/{the repetition rate (Hz) of the laser light} Formula (1)
Abstract:
An interposer substrate of the invention includes: a single substrate having a first main surface and a second main surface; a plurality of through-hole interconnections having at least a first portion formed so as to extend in a direction different from the thickness direction of the substrate, a second portion constituting one of end portions of a through-hole interconnection, and a third portion constituting the other of the end portions of the through-hole interconnection, the through-hole interconnections being provided inside the substrate so as to connect the first main surface to the second main surface, wherein the second portion is substantially perpendicular to the first main surface and is exposed to the first main surface, the third portion is substantially perpendicular to the second main surface and is exposed to the second main surface, and lengths of the through-hole interconnections are the same as each other.
Abstract:
A method of manufacturing a base body having a microscopic hole, includes: forming at least one of a first modified region and a second modified region by scanning inside of a base body with a focal point of a first laser light having a pulse duration on order of picoseconds or less; forming a periodic modified group formed of a plurality of third modified regions and fourth modified regions by scanning an inside of the base body with a focal point of a second laser light having a pulse duration on order of picoseconds or less; obtaining the base body which is formed so that the first modified region and the second modified region overlap or come into contact with the modified group; and forming a microscopic hole by removing the first modified region and the third modified regions by etching.
Abstract:
Disclosed is a substrate (10A) for trapping a microorganism or cell (T), characterized by comprising a base (4) and having a space (2) into which a fluid (R) containing the microorganism or cell (T) is introduced and a microtine suction hole (1) through which the space (2) communicates with the outside of the base (4). The substrate is further characterized in that the space (2) has been formed in the base (4), and at least the portion of the base (4) which forms the microfine suction hole (1) is constituted of a single member.