Compliant mechanical system for mini/micro chip mass transfer and packaging

    公开(公告)号:US11791178B1

    公开(公告)日:2023-10-17

    申请号:US18062026

    申请日:2022-12-06

    CPC classification number: H01L21/67144 H01L21/67259

    Abstract: A compliant mechanical system for Mini/Micro chip mass transfer and packaging comprises a flexure-based continuous ejector pin mechanism including a drive support plate, a mounting base, first thorn die attach drive devices, second thorn die attach drive devices, first flexible hinges, second flexible hinges, and a pricking pin. The first thorn die attach drive devices and the second thorn die attach drive devices are mounted on the drive support plate. A drive end of the first thorn die attach drive device horizontally passes rightward through the first flexible hinge at a corresponding position; a drive end of the second thorn die attach drive device horizontally passes leftward through the first flexible hinge at a corresponding position; and the mounting base is hinged to the drive ends of the two thorn die attach drive devices through the second flexible hinges.

    Method for synchronous wet etching processing of differential microstructures

    公开(公告)号:US10468265B1

    公开(公告)日:2019-11-05

    申请号:US16383885

    申请日:2019-04-15

    Abstract: A method for synchronous wet etching processing of differential microstructures, including the following steps: step a: performing photoetching on a processing surface of a workpiece to be processed to develop the workpiece; step b: affixing a mask to a surface opposite to the processing surface of the workpiece; step c: continuously cooling the mask; step d: placing the cooled mask and the workpiece in a wet etching device; and adding an etchant to the processing surface of the workpiece to start etching; step e: removing the mask and the workpiece from the wet etching device after the set etching time; separating the mask and the workpiece to obtain a workpiece with a etching structure. A temperature difference is formed between the pattern area to be processed and the retaining area.

    Flexure-based continuous ejector pin mechanism for mini/micro chip mass transfer

    公开(公告)号:US11715655B1

    公开(公告)日:2023-08-01

    申请号:US18062025

    申请日:2022-12-06

    CPC classification number: H01L21/67144 H01L33/0093

    Abstract: A flexure-based continuous ejector pin mechanism for Mini/Micro chip mass transfer includes a first drive frame, a second drive frame, a mounting base, a first thorn die attach drive device, a second thorn die attach drive device, first flexible hinges, second flexible hinges, and a pricking pin. The second drive frame and the first drive frame are connected through the first flexible hinge. The mounting base is connected to a left side and a right side of the second drive frame through the second flexible hinges. Compared with a laser transfer technology, the flexible movable thorn die attach device has lower cost and higher accuracy; compared with a vacuum nozzle transfer technology, the flexible movable thorn die attach device has higher transfer efficiency and quality; and compared with a conventional thorn die attach device, the flexible movable thorn die attach device has higher transfer efficiency and precision.

    Method and device for preparing graphene-based polyethylene glycol phase change material

    公开(公告)号:US11339316B1

    公开(公告)日:2022-05-24

    申请号:US17559112

    申请日:2021-12-22

    Abstract: A method and device for preparing a graphene-based polyethylene glycol phase change material. The method includes: (S1) dispersing carbon black in deionized water to form a carbon black dispersion; immersing polyurethane sponge in the carbon black dispersion; and taking out polyurethane sponge followed by drying to obtain a polyurethane sponge-carbon black combination; (S2) subjecting the polyurethane sponge-carbon black combination to a first electrical discharge machining to obtain a first intermediate; (S3) ultrasonically mixing the first intermediate, polyethylene glycol, and MgO to obtain a second intermediate; (S4) subjecting the second intermediate to a second electrical discharge machining to obtain a third intermediate; (S5) subjecting the third intermediate to acid washing to obtain a fourth intermediate, and drying the fourth intermediate; (S6) injecting polyethylene glycol into the fourth intermediate followed by stirring in a mold and drying to prepare the graphene-based polyethylene glycol phase change material.

Patent Agency Ranking