Abstract:
A semiconductor device is provided that includes one or more ceramic material layers and one or more low dielectric constant (low-K) epoxy layers on top to be electrically coupled to an integrated circuit device, such as a chip die. The resulting ceramic/organic hybrid substrate takes advantage of the thin low-cost, low-K epoxy layer, by routing the dense circuitry from the chip die to the ceramic material layer. In addition, the use of low-K epoxy layer may reduce the number of ceramic material layers required to about three layers, thus significantly reducing the cost of the substrate. Low-K epoxy material layer may be laminated onto the ceramic material layer to reduce throughput time and cost. The ceramic/organic hybrid substrate may also take advantage of the properties of ceramic materials, which have a much more rigid structure than organic materials and a low CTE (coefficient of thermal expansion) that works well with ultra low-K chip dies. The ceramic/organic hybrid substrate also may make possible the fabrication of a bottom cavity package for capacitors placement.
Abstract:
A low cost microelectronic circuit package includes a single build up metallization layer above a microelectronic die. At least one die is fixed within a package core using, for example, an encapsulation material. A single metallization layer is then built up over the die/core assembly. The metallization layer includes a number of landing pads having a pitch that allows the microelectronic device to be directly mounted to an external circuit board. In one embodiment, the metallization layer includes a number of signal landing pads within a peripheral region of the layer and at least one power landing pad and one ground landing pad toward a central region of the layer.
Abstract:
A low cost technique for packaging microelectronic circuit chips fixes a die within an opening in a package core. At least one metallic build up layer is then formed on the die/core assembly and a grid array interposer unit is laminated to the build up layer. The grid array interposer unit can then be mounted within an external circuit using any of a plurality of mounting technologies (e.g., ball grid array (BGA), land grid array (LGA), pin grid array (PGA), surface mount technology (SMT), and/or others). In one embodiment, a single build up layer is formed on the die/core assembly before lamination of the interposer.