Abstract:
A method for laying out a circuit board includes following steps. A substrate board is formed with a plurality of board sides. A ground plane, including a plurality of tiles, is provided. Each ground trace tile is defined by a plurality of ground traces. A signal plane on the substrate board has a plurality of signal traces that comprise of a plurality of straight line segments. Any one ground trace of each tile is arranged at an angle other than zero degrees relative to one determined board side. The straight line segments is applied to be mapped on the ground plane crossing one ground trace of one tile within an angle range determined by the ground traces of the tile and an adjacent diagonal line of the tile. The one ground trace and the straight line segments are applied at an angle movable in a range from 22.5° to 32.5°.
Abstract:
A printed circuit board includes a base formed from a plurality of woven fibers, and signal traces laid on the base. Each of the signal traces includes at least a straight line segment. The signal traces are laid on the base in such a manner that the line segments of the signal traces mapped on the base cross the fibers at angles not equal to zero degrees.
Abstract:
A chip package structure comprises a carrier, a chip and an underfill. The chip has an active surface on which a plurality of bumps is formed. The chip is flip-chip bonded onto the carrier with the active surface facing the carrier, and is electrically connected to the carrier through the bumps. The underfill is filled between the chip and the carrier. A portion of the underfill near the chip serves as a first underfill portion. The portion of the underfill near the carrier serves as a second underfill portion. The Young's modulus of the first underfill portion is smaller than the Young's modulus of the second underfill portion. The second underfill portion can be optionally replaced with a selected encapsulation. The selected encapsulation covers the chip and the carrier around the chip.
Abstract:
A motherboard includes a circuit board, a first chip and a second chip disposed on the circuit board. Four securing holes are defined in the circuit board around the first chip, for mounting a heat dissipating module on the first chip. Two of the securing holes determine a first line, and the other two securing holes determine a second line parallel to the first line. A center of the second chip is located along a centerline between the first and second lines. Should the circuit board suffer from an impact, damage to the chips may be effectively minimized or prevented.
Abstract:
A heat sink assembly includes a printed circuit board, a chip mounted on a top surface of the board, and a heat sink attached onto the chip of the board. The heat sink includes a base, a plurality of fins extending up from the base, and a plurality of legs extending down from the base. The legs of the heat sink contact the top surface of the board to support the heat sink.
Abstract:
A chip package structure is provided. The chip package structure has a chip and a carrier, wherein the carrier has a package substrate and a plurality of contacts. The package substrate has a carrying surface and a back surface. The chip is disposed on the carrying surface of the package substrate, and the contacts are disposed on the back surface of the package substrate in a pattern of a plurality of concentric circles. Additionally, the chip package structure can be disposed on a circuit board with solder balls formed on the contacts to form a circuit board package structure. The thermal stress exerted on the solder balls may be uniformly distributed in the carrier, the chip package structure, and the circuit board package structure. The bonding strength between the package substrate and the circuit board is improved.
Abstract:
A motherboard includes a printed circuit board, a first chip and a second chip arranged on the printed circuit board in parallel. A plurality of securing holes are defined in the printed circuit board around the first chip. At least one isolating hole is defined in the printed circuit board between the second chip and a first line determined by two of the securing holes close to the second chip. Should the printed circuit board suffer an impact, damage to the chips may be effectively minimized or prevented.
Abstract:
A chip package structure including a carrier, a chip, and an underfill layer is disclosed. The carrier has a number of bumps disposed thereon. The chip has an active surface. The chip is flip-chip bonded and electrically connected to the carrier through the bumps such that the active surface of the chip faces the carrier. The underfill layer is disposed on the carrier between the chip and the carrier such that a gap is maintained between the underfill layer and the chip.
Abstract:
A chip package structure comprising a carrier, a chip and an underfill layer is disclosed. The carrier has a plurality of bumps disposed thereon. The chip has an active surface. The chip is flip-chip bonded and electrically connected to the carrier through the bumps such that the active surface of the chip faces the carrier. The underfill layer is disposed on the carrier between the chip and the carrier such that a gap is maintained between the underfill layer and the chip.
Abstract:
An exemplary optical disc drive apparatus includes a guide shaft configured to movably support a pickup head, and an elastically deformable member. The elastically deformable member includes a main body, and a cantilever slanting up from a middle part of a front edge of the main body. The cantilever is broad at a lower portion thereof and narrow at an upper portion thereof, and the cantilever is for resiliently pressing a corresponding end of the guide shaft. The elastically deformable member reduces a stress surface between the cantilever and the guide shaft, and lengthens the life span thereof.