Abstract:
A method for reducing the tilt of an optical unit during manufacture of an image sensor includes the steps of: providing a semimanufacture of the image sensor, carrying out a preheating process, carrying out an adhesive application process, carrying out an optical unit mounting process, and carrying out a packaging process. Due to the preheating process, the semimanufacture will be subjected to a stabilized process environment during the adhesive application process and the optical unit mounting process, so as for the optical unit to remain highly flat once attached to the semimanufacture. The method reduces the chances of tilt and crack of the optical unit and thereby contributes to a high yield rate.
Abstract:
A sensor package structure includes a substrate, a sensor chip disposed on the substrate, several metal wires electrically connected to the substrate and the sensor chip, a translucent layer corresponding in position to the sensor chip, a combining layer firmly fixing the translucent layer to the sensor chip, and a packaging compound. A top surface of the sensor chip has a sensing region and a spacing region around the sensing region. The sensor chip includes several connecting pads arranged on the top surface between at least part of the edges thereof and the spacing region. The translucent layer has a fixing region arranged outside a portion thereof adhered to the combining layer. The packaging compound covers the fixing region and the external sides of the sensor chip, the combining layer, and the translucent layer. Each metal wire is embedded in the combining layer and the packaging compound.
Abstract:
Disclosed is an optical sensor including a substrate, a redistribution chip structure disposed on the substrate, a sensor chip disposed on the redistribution chip structure, a light-permeable sheet arranged above the sensor chip, metal wires electrically connecting the substrate and the sensor chip, and a package body disposed on the substrate. The redistribution chip structure includes an insulating body, a first electronic chip embedded in the insulating body, and a redistribution layer (RDL) connected to bottoms of the insulating body and the first electronic chip. The RDL is fixed onto the substrate in a flip-chip manner. A projected region defined by orthogonally projecting a sensing area of the sensor chip onto the redistribution chip structure is located inside outer edges of the redistribution chip structure. The redistribution chip structure, the sensor chip, a part of the light-permeable sheet, and the metal wires are embedded in the package body.
Abstract:
A sensor package structure includes a substrate, a sensor chip disposed on the substrate, a plurality of metal wires electrically connecting the sensor chip to the substrate, a light-permeable layer, a combining layer connecting a portion of the light-permeable layer onto the sensor chip, and a packaging compound covering lateral sides of the sensor chip, the light-permeable layer, and the combining layer. Each of the metal wires is embedded in the combining layer and the packaging compound, and has a diameter within a range of 0.8-1.1 mil. Each of the metal wires includes a first segment connected to the substrate and a second segment connected to the sensor chip. In each of the metal wires, the second segment integrally and curvedly extends from the first segment, and the second segment and a top surface of the sensor chip have a sloping angle within a range of 5-45 degrees.
Abstract:
A sensor package structure includes a substrate, a sensor chip disposed on the substrate, several metal wires electrically connected to the substrate and the sensor chip, a translucent layer corresponding in position to the sensor chip, and an adhesive. A top surface of the sensor chip has a sensing region and a spacing region around the sensing region. The sensor chip includes several connecting pads arranged on a first portion of the top surface between the first edge and the spacing region, and a second portion of the top surface between the second edge and the spacing region is provided without any connecting pad. The width of the first portion is greater than that of the second portion. The adhesive covers the surrounding side of the sensor chip, the first portion, and the surrounding side of the translucent layer. Part of each metal wire is embedded in the adhesive.
Abstract:
A two-stage packaging method of image sensors is disclosed. The packaging method includes the following steps: providing a substrate, fixing an image sensor chip on the substrate, fixing a transparent board on the image sensor chip, electrically connecting the image sensor chip and the substrate, forming a first encapsulant lay, and forming a second encapsulant layer. The two-stage packaging method prevents excessive pressure from being generated by formation of the encapsulant layers during the image sensor packaging process. Such excessive pressure, if generated, may result in position shift of the image sensor chip or damage of the bonding wires. The two-stage packaging method can increase the yield of the image sensor packaging process as well as the sensitivity of image sensors, thereby improving the quality and production of image sensor packaging while lowering the manufacturing costs.
Abstract:
A sensor package structure includes a substrate, a sensor chip disposed on the substrate, a plurality of metal wires electrically connecting the substrate and the sensor chip, a glass cover disposed on the sensor chip, and an adhesive layer connecting the glass cover to the substrate. The substrate is made of a material having a coefficient of thermal expansion (CTE) that is less than 10 ppm/° C. The glass cover includes a board body and an annular supporting body connected to the board body. The annular supporting body of the glass cover is fixed onto the substrate through the adhesive layer, so that the glass cover and the substrate jointly surround an enclosed accommodating space. The sensor chip and the metal wires are arranged in the accommodating space, and the sensing region of the sensor chip faces the light-permeable portion of the board body.
Abstract:
A sensor package structure includes a substrate, a sensor chip disposed on the substrate, a plurality of wires electrically connected to the substrate and the sensor chip, a transparent layer facing the sensor chip, a support disposed on the substrate, and a packaging compound disposed on the substrate and covering side edges of the support and the transparent layer. A part of each wire is embedded in the support. A height from the upper surface of the substrate to the top of the support is larger than a height from the upper surface of the substrate to the top of any of the wires. The bottom surface of the transparent layer has a central region facing the sensor chip and a ring-shaped supporting region surrounded by the central region. The support is arranged outside the sensor chip and abuts against the supporting region.
Abstract:
A stack type sensor package structure includes a substrate, a semiconductor chip disposed on the substrate, a frame disposed on the substrate and aside the semiconductor chip, a sensor chip disposed on the frame, a plurality of wires electrically connecting the sensor chip and the substrate, a transparent layer being of its position corresponding to the sensor chip, a support maintaining the relative position between the sensor chip and the transparent layer, and a package compound disposed on the substrate and partially covering the frame, the support, and the transparent layer. Thus, through disposing a frame within the stack type sensor package structure, the structural strength of the overall sensor package structure is reinforced, and the stability of the wiring of the sensor chip is effectively increased.
Abstract:
A chip-scale sensor package structure includes a sensor chip, a ring-shaped support disposed on a top surface of the sensor chip, a light permeable member disposed on the ring-shaped support, a package body, and a redistribution layer (RDL). The package body surrounds outer lateral sides of the sensor chip, the ring-shaped support and the light permeable member. A bottom surface of the sensor chip and a surface of the light permeable member are exposed from the package body. The RDL is directly formed on the bottom surface of the sensor chip and a bottom side of the package body. The RDL includes a plurality of external contacts arranged on a bottom surface thereof and electrically coupled to the sensor chip. A portion of the external contacts are arranged outside of a projection region defined by orthogonally projecting the sensor chip onto the bottom surface of the RDL.