Abstract:
A plating method for a printed circuit board includes: a first step of providing a substrate having a plurality of connection pads and circuit patterns connected to the connection pads; a second step of using some of the circuit patterns provided on a surface of the substrate as a power connection portion and connecting the power connection portion to an external power source; a third step of covering a surface of the substrate excepting the connection pads with a plating resistance resist to shield it; a fourth step of supplying power to the connection pad through the power connection portion and forming a gold-plated layer on the connection pad; and a fifth step of making the power connection portion and the external power source to be electrically short. With this method, a printed circuit board without a power supply line for gold-plating can be obtained.
Abstract:
A method for forming bonding pads on a printed circuit board (PCB) with circuit patterns is provided. A plurality of copper patterns are formed on the PCB which are electrically connected to the circuit patterns, and a filler is filled between the copper patterns such that an upper surface of the copper pattern is exposed. A plating layer is then applied to the exposed upper surface of the copper patterns. Protrusion of the plating layer at a lower portion of a copper pattern is prevented, thus reducing an interval between the wire bonding pad(s) and potentially increasing the number of bonding pads which may be effectively formed on a given PCB.
Abstract:
Bonding pad(s) formed on a printed circuit board with circuit patterns. The bonding pad(s) include a plurality of copper patterns formed on the PCB and electrically connected to the circuit patterns, a filler filled between the copper patterns such that an upper surface of the copper pattern is exposed, and a plating layer applied at an upper surface of the copper patterns. An interval between wire bonding pad(s) is reduced by preventing a nickel plating layer and a gold plating layer from protruding at a lower portion of a copper pattern when they are formed on the copper patterns.
Abstract:
A method for manufacturing a printed circuit board includes: forming inner circuit patterns in an insulating material in multi-layers, forming a plurality of through holes at certain portions of the insulating material, and forming an outer circuit pattern which is electrically connected to the inner circuit pattern, at an inner circumferential surface of the through hole and the surface of the insulating material, and a terminal portion; forming a first photo solder resist layer at an entire surface of the insulating material and an entire surface of the outer circuit pattern, and exposing the terminal portion by removing a specific portion of the first photo solder resist layer; abrading the surface of the first photo solder resist layer; printing a second photo solder resist layer at the surface of the first photo solder resist layer, and exposing the terminal portion to the outside by removing a specific portion of the second photo solder resist layer; and forming a pad portion by plating the surface of the exposed terminal portion with gold, and electrically connecting the pad portion and the terminal portion.
Abstract:
A method for fabricating a multi-layer printed circuit board can include forming an etching resist layer on a first metal layer having plating grooves that selectively expose the first metal layer, forming a plated layer at the surface of the first metal layer exposed by the plating groove through a plating process to form connection protrusion, removing the etching resist layer, forming an insulation layer at the first metal layer and positioning a second metal layer at the surface of the insulation layer coupled to an end portion of the connection protrusion. By forming the connection protrusion through the plating process, a loss of material can be reduced and a strength of the connection protrusion can be increased. Further, a complexity of the fabrication process is reduced to reduce costs and increase productivity.
Abstract:
A circuit pattern fabrication method of a printed circuit board includes: a first step of forming a resin layer at a surface of an insulation material; a second step of selectively removing the resin layer; a third step of forming a metal plated layer at the surface of the resin layer-removed portion of the insulation material to form circuit patterns and a connection pad; and a fourth step of forming a gold plated layer on the connection pad. By doing that, a fine circuit pattern can be easily formed.