Abstract:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
Abstract:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
Abstract:
The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
Abstract:
The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
Abstract:
Embodiments of the invention generally provide a method for forming a doped silicon-containing material on a substrate. In one embodiment, the method provides depositing a polycrystalline layer on a dielectric layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer having a dopant concentration within a range from about 1×1019 atoms/cm3 to about 1×1021 atoms/cm3, wherein the doped polycrystalline layer contains silicon or may contain germanium, carbon, or boron. The substrate may be heated to a temperature of about 800° C. or higher, such as about 1,000° C., during the rapid thermal anneal. Subsequently, the doped polycrystalline layer may be exposed to a laser anneal and heated to a temperature of about 1,000° C. or greater, such within a range from about 1,050° C. to about 1,400° C., for about 500 milliseconds or less, such as about 100 milliseconds or less.
Abstract translation:本发明的实施方案通常提供了在衬底上形成掺杂的含硅材料的方法。 在一个实施例中,该方法提供在电介质层上沉积多晶层并且用掺杂剂注入多晶层以形成掺杂浓度在约1×10 19原子/ cm 2范围内的掺杂多晶层 其中掺杂的多晶层含有硅或可含锗,碳或硼。 在快速热退火期间,衬底可以被加热到约800℃或更高,例如约1000℃的温度。 随后,掺杂多晶层可以暴露于激光退火并加热至约1000℃或更高的温度,例如在约1050℃至约1400℃的温度下,持续约500毫秒或更短 ,例如约100毫秒或更少。
Abstract:
A temperature sensor for measuring a temperature of a substrate in a thermal processing chamber is described. The chamber includes a reflector forming a reflecting cavity with a substrate when the substrate is positioned in the chamber. The temperature sensor includes a probe having an input end positioned to receive radiation from the reflecting cavity, and a detector optically coupled to an output end of the probe. The radiation entering the probe includes reflected radiation and non-reflected radiation. The detector measures an intensity of a first portion of the radiation entering the probe to generate a first intensity signal and measures an intensity of a second portion of the radiation entering the probe to generate a second intensity signal. The detector is configured so that a ratio of the reflected radiation to the non-reflected radiation is higher in the first portion than the second portion. The two intensity signals are used to calculate the temperature and emissivity of the substrate.
Abstract:
A calibration instrument for calibrating a temperature probe, such as pyrometer. The calibration instrument uses two stable light sources, such as light emitting diodes, to simulate a blackbody of a known temperature.
Abstract:
Apparatus and methods of thermally processing a substrate inside a processing chamber including a radiation source for heating the substrate are described. In one aspect, a detection system is configured to receive radiation from the substrate and to produce first and second detection system signals respectively representative of different first and second spectral portions of the received radiation. A processor is coupled to the detection system and configured to compute a measure of substrate temperature based upon the second detection system signal and to compute an indication of the relative accuracy of the computed measure of substrate temperature based upon the first detection system signal. In another aspect, the substrate is radiatively heated; radiation is received from the substrate and an intensity signal representative of the intensity of the received radiation is produced; an indication of the rate at which the substrate is being heated is computed based upon the intensity signal; and when the substrate is placed onto a substrate support inside the processing chamber is controlled based upon the computed heating rate indication.
Abstract:
A method of calibrating a temperature measurement system including the steps of heating a first substrate having a high emissivity value to a first process temperature; while the first substrate is at the first process temperature, calibrating a first probe and a second probe to produce temperature indications from the first substrate that are substantially the same, the first probe having associated therewith a first effective reflectivity and the second probe having associated therewith a second effective reflectivity, the first and second effective reflectivities being different; heating a second substrate having a low emissivity value to a second process temperature, the low emissivity value being lower than the high emissivity value; with the second substrate at the second process temperature, using both the first probe and the second probe to measure the temperature of the second substrate, the first probe producing a first temperature indication and the second probe producing a second temperature indication different from the first temperature indication; measuring a sensitivity of the temperature indication produced by the first probe to changes in substrate emissivity; and by using the measured sensitivity and the first and second temperature indications, computing a correction factor for the first probe, the correction factor to be applied to subsequent temperature readings of the first probe to produce corrected temperature readings.
Abstract:
A method of correcting a temperature probe reading in a thermal processing chamber for heating a substrate, including the steps of heating the substrate to a process temperature; using a first, a second and a third probe to measure the temperature of the substrate, the first and third probes having a first effective reflectivity and the second probe having a second effective reflectivity, the first probe producing a first temperature indication, the second probe producing a second temperature indication and the third probe producing a third temperature indication, and wherein the first and second effective reflectivities are different; and from the first and second temperature indications, deriving a corrected temperature reading for the first probe, wherein the corrected temperature reading is a more accurate indicator of an actual temperature of the substrate than an uncorrected readings produced by both the first and second probes. Thereafter, deriving a corrected temperature reading for the third probe by adjusting the temperature correction calculated for the first probe according to the measured emissivity sensitivity associated with the environment of the third probe to provide a corrected temperature reading that is a more accurate indicator of an actual temperature of the substrate in the environment of the third probe. An apparatus for carrying out the method is also disclosed.