Abstract:
Systems and methods for enhancing reliability are presented. In one embodiment, a system comprises a processor configured to execute program instructions and contemporaneously perform reliability enhancement operations (e.g., fault checking, error mitigation, etc.) incident to executing the program instructions. The fault checking can include: identifying functionality of a particular portion of the program instructions; speculatively executing multiple sets of operations contemporaneously; and comparing execution results from the multiple sets of operations. The multiple sets of operations are functional duplicates of the particular portion of the program instructions. If the execution results have a matching value, then the value can be made architecturally visible. If the execution results do not have a matching value, the system can be put in a safe mode. An error mitigation operation can be performed can include a corrective procedure. The corrective procedure can include rollback to a known valid state.
Abstract:
A system, method, and computer program product are provided for remapping registers based on a change in execution mode. A sequence of instructions is received for execution by a processor and a change in an execution mode from a first execution mode to a second execution mode within the sequence of instructions is identified, where a first register mapping is associated with the first execution mode and a second register mapping is associated with the second execution mode. Data stored in a set of registers within a processor is reorganized based on the first register mapping and the second register mapping in response to the change in the execution mode.
Abstract:
The disclosure provides a micro-processing system operable in a hardware decoder mode and in a translation mode. In the hardware decoder mode, the hardware decoder receives and decodes non-native ISA instructions into native instructions for execution in a processing pipeline. In the translation mode, native translations of non-native ISA instructions are executed in the processing pipeline without using the hardware decoder. The system includes a code portion profile stored in hardware that changes dynamically in response to use of the hardware decoder to execute portions of non-native ISA code. The code portion profile is then used to dynamically form new native translations executable in the translation mode.
Abstract:
The disclosure provides a micro-processing system operable in a hardware decoder mode and in a translation mode. In the hardware decoder mode, the hardware decoder receives and decodes non-native ISA instructions into native instructions for execution in a processing pipeline. In the translation mode, native translations of non-native ISA instructions are executed in the processing pipeline without using the hardware decoder. The system includes a code portion profile stored in hardware that changes dynamically in response to use of the hardware decoder to execute portions of non-native ISA code. The code portion profile is then used to dynamically form new native translations executable in the translation mode.
Abstract:
Systems and methods for enhancing reliability are presented. In one embodiment, a system comprises a processor configured to execute program instructions and contemporaneously perform reliability enhancement operations (e.g., fault checking, error mitigation, etc.) incident to executing the program instructions. The fault checking can include: identifying functionality of a particular portion of the program instructions; speculatively executing multiple sets of operations contemporaneously; and comparing execution results from the multiple sets of operations. The multiple sets of operations are functional duplicates of the particular portion of the program instructions. If the execution results have a matching value, then the value can be made architecturally visible. If the execution results do not have a matching value, the system can be put in a safe mode. An error mitigation operation can be performed can include a corrective procedure. The corrective procedure can include rollback to a known valid state.
Abstract:
A system, method, and computer program product are provided for remapping registers based on a change in execution mode. A sequence of instructions is received for execution by a processor and a change in an execution mode from a first execution mode to a second execution mode within the sequence of instructions is identified, where a first register mapping is associated with the first execution mode and a second register mapping is associated with the second execution mode. Data stored in a set of registers within a processor is reorganized based on the first register mapping and the second register mapping in response to the change in the execution mode.