Abstract:
This disclosure provides systems, methods and apparatus for a compact 3-D coplanar transmission line (CTL). In one aspect, the CTL has a proximal end and a distal end separated, in a first plane, by a distance D, the first plane being parallel to a layout area of a substrate. The plane is defined by mutually orthogonal axes x and z The CTL provides a conductive path having pathlength L. D is substantially aligned along axis z, L is at least 1.5×D, and the CPW is configured such that at least one third of the pathlength L is disposed along one or more directions having a substantial component orthogonal to the first plane. Less than one third of the pathlength L is disposed in a direction having a substantial component parallel to axis x.
Abstract:
This disclosure provides systems, methods and apparatus for three-dimensional (3-D) through-glass via inductors. In one aspect, the through-glass via inductor includes a glass substrate with a first cavity, a second cavity, and at least two through-glass vias. The through-glass vias include metal bars that are connected by a metal trace. The metal bars and the metal trace define the inductor, and each cavity is at least partially filled with magnetic material. The magnetic material can include a plurality of particles having an average diameter of less than about 20 nm. The first cavity can be inside the inductor and the second cavity can be outside inductor. In some implementations, the first and the second cavity can be vias that extend only partially through the glass substrate.
Abstract:
This disclosure provides systems, methods and apparatus related to acoustic resonators that include composite transduction layers for enabling selective tuning of one or more acoustic or electromechanical properties. In one aspect, a resonator structure includes one or more first electrodes, one or more second electrodes, and a transduction layer arranged between the first and second electrodes. The transduction layer includes a plurality of constituent layers. In some implementations, the constituent layers include one or more first piezoelectric layers and one or more second piezoelectric layers. The transduction layer is configured to, responsive to signals provided to the first and second electrodes, provide at least a first mode of vibration of the transduction layer with a displacement component along the z axis and at least a second mode of vibration of the transduction layer with a displacement component along the plane of the x axis and they axis.
Abstract:
This disclosure provides implementations of inductors, transformers, and related processes. In one aspect, a device includes a substrate having first and second surfaces. A first inducting arrangement includes a first set of vias, a second set of vias, a first set of traces arranged over the first surface connecting the first and second vias, and a second set of traces arranged over the second surface connecting the first and second vias. A second inducting arrangement is inductively-coupled and interleaved with the first inducting arrangement and includes a third set of vias, a fourth set of vias, a third set of traces arranged over the first surface connecting the third and fourth vias, and a fourth set of traces arranged over the second surface connecting the third and fourth vias. One or more sets of dielectric layers insulate portions of the traces from one another.
Abstract:
This disclosure provides implementations of methods, apparatus and systems for producing acoustic wave devices and for selectively modifying one or more acoustic or electromechanical characteristics of such devices. In one aspect, a method includes depositing a structural layer over a substrate. The structural layer includes a plurality of structural portions, each being positioned over a corresponding device region. The method also includes arranging a mask layer over the structural layer. The mask layer includes a plurality of mask portions, each including a number of mask openings that expose a corresponding region of the structural portion. The method also includes accelerating dopant particles toward the mask layer. The accelerated dopant particles that proceed through the mask openings are impacted into the corresponding structural portion. The impacted dopant particles modify material properties in the structural portion, which then effect a change in the acoustic or electromechanical characteristics of the acoustic wave device.
Abstract:
This disclosure provides systems, methods and apparatus for a compact 3-D coplanar transmission line (CTL). In one aspect, the CTL has a proximal end and a distal end separated, in a first plane, by a distance D, the first plane being parallel to a layout area of a substrate. The plane is defined by mutually orthogonal axes x and z The CTL provides a conductive path having pathlength L. D is substantially aligned along axis z, L is at least 1.5×D, and the CPW is configured such that at least one third of the pathlength L is disposed along one or more directions having a substantial component orthogonal to the first plane. Less than one third of the pathlength L is disposed in a direction having a substantial component parallel to axis x.
Abstract:
This disclosure provides implementations of inductors, transformers, and related processes. In one aspect, a device includes a substrate having first and second surfaces. A first inducting arrangement includes a first set of vias, a second set of vias, a first set of traces arranged over the first surface connecting the first and second vias, and a second set of traces arranged over the second surface connecting the first and second vias. A second inducting arrangement is inductively-coupled and interleaved with the first inducting arrangement and includes a third set of vias, a fourth set of vias, a third set of traces arranged over the first surface connecting the third and fourth vias, and a fourth set of traces arranged over the second surface connecting the third and fourth vias. One or more sets of dielectric layers insulate portions of the traces from one another.
Abstract:
This disclosure provides systems, methods and apparatus related to acoustic resonators that include composite transduction layers for enabling selective tuning of one or more acoustic or electromechanical properties. In one aspect, a resonator structure includes one or more first electrodes, one or more second electrodes, and a transduction layer arranged between the first and second electrodes. The transduction layer includes a plurality of constituent layers. In some implementations, the constituent layers include one or more first piezoelectric layers and one or more second piezoelectric layers. The transduction layer is configured to, responsive to signals provided to the first and second electrodes, provide at least a first mode of vibration of the transduction layer with a displacement component along the z axis and at least a second mode of vibration of the transduction layer with a displacement component along the plane of the x axis and they axis.
Abstract:
This disclosure provides implementations of methods, apparatus and systems for producing acoustic wave devices and for selectively modifying one or more acoustic or electromechanical characteristics of such devices. In one aspect, a method includes depositing a structural layer over a substrate. The structural layer includes a plurality of structural portions, each being positioned over a corresponding device region. The method also includes arranging a mask layer over the structural layer. The mask layer includes a plurality of mask portions, each including a number of mask openings that expose a corresponding region of the structural portion. The method also includes accelerating dopant particles toward the mask layer. The accelerated dopant particles that proceed through the mask openings are impacted into the corresponding structural portion. The impacted dopant particles modify material properties in the structural portion, which then effect a change in the acoustic or electromechanical characteristics of the acoustic wave device.