Abstract:
An optical communications transmitter includes a oscillator source, producing a clock signal, a data source, producing a data signal, a modulating circuit for modulating the clock signal using the data signal to produce modulating signals, optical drivers, receiving the modulating signals and producing optical driving signals based on the modulating signals and optical emitters, producing small numbers of photons based on the optical driving signals. The small numbers of photons are time-correlated between at least two separate optical transmission wavelengths and quantum states and the small number of photons can be detected by a receiver to reform the data signal.
Abstract:
A system for determining gas compositions includes a probe, inserted into a source of gaseous material, the probe having a gas permeable sensor tip and being capable of sending and receiving light to and from the gaseous material, a sensor body, connected to the probe, situated outside of the source and a fiber bundle, connected to the sensor body and communicating light to and from the probe. The system also includes a laser source, connected to one portion of the fiber bundle and providing laser light to the fiber bundle and the probe a Raman spectrograph, connected to another portion of the fiber bundle, receiving light from the probe and filtering the received light into specific channels and a data processing unit, receiving and analyzing the received light in the specific channels and outputting concentration of specific gas species in the gaseous material based on the analyzed received light.
Abstract:
An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.
Abstract:
The present invention presents a high-speed electromechanical shutter which has at least two rotary beam choppers that are synchronized using a phase-locked loop electronic control to reduce the duty cycle. These choppers have blade means that can comprise discs or drums, each having about 60 (+/−15) slots which are from about 0.3 to about 0.8 mm wide and about 5 to about 20 mm long (radially) which are evenly distributed through out 360°, and a third rotary chopper which is optically aligned has a small number of slots, such as for example, 1 to 10 slots which are about 1 to about 2 mm wide and about 5 to about 20 mm long (radially). Further the blade means include phase slots that allow the blade means to be phase locked using a closed loop control circuit. In addition, in a preferred embodiment, the system also has a leaf shutter. Thus the invention preferably achieves a gate width of less than about 100 microseconds, using motors that operate at 3000 to 10,000 rpm, and with a phase jitter of less than about 1.5 microseconds, and further using an aperture with more than about 75% optical transmission with a clear aperture of about 0.8 mm×10 mm. The system can be synchronized to external sources at 0 6 kHz lasers, data acquisition systems, and cameras.
Abstract:
The invention relates a horn-based multi-driver wide-bandwidth loudspeaker with a flat-frequency response having the property of controlled acoustic directivity at wavelengths larger than the nominal wavelength supported by the horns' mouth circumference which is provided by means of a centerbody fitted with acoustic drivers that are acoustically coupled to the walls of the horn enclosure.
Abstract:
The invention relates a horn-based multi-driver wide-bandwidth loudspeaker with a flat-frequency response having the property of controlled acoustic directivity at wavelengths larger than the nominal wavelength supported by the horns' mouth circumference which is provided by means of a centerbody fitted with acoustic drivers that are acoustically coupled to the walls of the horn enclosure.
Abstract:
A compact and robust imaging Raman spectrograph has a collimating input lens assembly, a spectral filter assembly, a transmission diffraction grating, a focusing lens assembly, and a light detector. The spectral filter assembly is located between the two lenses and comprises a notch or long-pass filter optical interference filter, a plurality of optical channel plates for limiting the optical acceptance angle of the light passing the optical interference filter, and a transmission diffraction grating, all mounted in a single assembly. The spectral filter assembly permits a very high degree of elastically scattered light rejection and excellent stray-light reduction and management, while permitting a high level of optical throughput to maximize the signal of the weakly scattered Raman signal.
Abstract:
A compact and robust imaging Raman spectrograph has a collimating input lens assembly, a spectral filter assembly, a transmission diffraction grating, a focusing lens assembly, and a light detector. The spectral filter assembly is located between the two lenses and comprises a notch or long-pass filter optical interference filter, a plurality of optical channel plates for limiting the optical acceptance angle of the light passing the optical interference filter, and a transmission diffraction grating, all mounted in a single assembly. The spectral filter assembly permits a very high degree of elastically scattered light rejection and excellent stray-light reduction and management, while permitting a high level of optical throughput to maximize the signal of the weakly scattered Raman signal.
Abstract:
A means of detecting the in-situ fuel-to-air-ratio (FAR) in a combustor or flame zone using a Fourier-based flame ionization probe is presented. The use of multiple excitation frequencies and its detection at certain frequencies or combinations of harmonics of those excitation frequencies, namely, the inter-modulation distortion, provides a novel means of extracting a high signal-to-noise ratio (SNR) FAR measurement in a combustor.
Abstract:
A means of detecting the in-situ fuel-to-air-ratio (FAR) in a combustor or flame zone using a Fourier-based flame ionization probe is presented. The use of multiple excitation frequencies and its detection at certain frequencies or combinations of harmonics of those excitation frequencies, namely, the inter-modulation distortion, provides a novel means of extracting a high signal-to-noise ratio (SNR) FAR measurement in a combustor.