Abstract:
To provide a thin film capacitor in which a pair of terminal electrodes can be disposed on the same plane. A thin film capacitor includes a metal foil having a roughened upper surface, a dielectric film covering the upper surface of the metal foil and having an opening for partly exposing the metal foil therethrough, a first electrode layer contacting the metal foil through the opening, and a second electrode layer contacting the dielectric film without contacting the metal foil. With this configuration, both the first and second electrode layers can be disposed on the upper surface of the metal foil. In addition, since the metal foil is surface-roughened, a larger capacitance can be obtained.
Abstract:
A thin-film capacitor satisfies a relationship of CTE1>CTE2>CTE3 regarding a linear expansion coefficient CTE1 of a base, a linear expansion coefficient CTE2 of a capacitance unit, and a linear expansion coefficient CTE3 of a barrier layer. The inventors have newly found that in a case in which such a relationship is satisfied, when a temperature falls from a deposition temperature, cracking occurring in the capacitance unit of the thin-film capacitor is prevented, and cracking occurring in the barrier layer is also prevented.
Abstract:
An electronic component includes a first electronic component and a second electronic component that is stacked on the first electronic component. A second electrode layer of the first electronic component includes a plurality of divided electrode layers, and a pair of electrodes of the second electronic component are electrically connected to different electrode layers included in the plurality of electrode layers of the second electrode layer, and a first electrode layer of the first electronic component is divided into a plurality of electrode layers to correspond to the electrode layers which are included in the second electrode layer and which are electrically connected to the pair of electrodes of the second electronic component.
Abstract:
A method of providing a coating on a conductor. The coating has a first layer containing palladium and a second layer containing gold from the conductor side. The first layer has an inner layer on the conductor side and an outer layer arranged nearer to the second layer than the inner layer, and the outer layer has a higher phosphorus concentration than the inner layer.
Abstract:
A high-frequency transmission line in which the alternating-current resistance is low is provided. A high-frequency transmission line 2 is a high-frequency transmission line 2 to transmit an alternating-current electric signal, and contains metal and carbon nanotube, and the carbon nanotube is unevenly distributed at a peripheral part 8 of a cross-section that is of the high-frequency transmission line 2 and that is perpendicular to a transmission direction of the alternating-current electric signal.
Abstract:
A high-frequency transmission line having low alternate current (AC) resistance is provided. One aspect of the present invention is a high-frequency transmission line disposed along a surface of an insulating support, wherein, letting F [Hz] be the frequency of an AC electric signal transmitted by the high-frequency transmission line and Ms [Wb/m] be the saturation magnetization per unit area, the frequency value F and the saturation magnification value per unit area Ms satisfy the following expression (1): Ms≦(1.5×102)/F+5.7×10−8. (1)
Abstract:
To provide a thin film capacitor in which peeling-off of an electrode layer is less likely to occur. A thin film capacitor includes a metal foil having a roughened upper surface, a dielectric film covering the upper surface of the metal foil and having an opening for partly exposing the metal foil therethrough, a first electrode layer contacting the metal foil through the opening and further contacting the dielectric film, and a second electrode layer contacting the dielectric film without contacting the metal foil. With this configuration, both the first and second electrode layers can be disposed on the upper surface of the metal foil. In addition, the first electrode layer contacts not only the metal foil but also the dielectric film, making peeling of the first electrode layer less likely to occur.
Abstract:
Disclosed herein is an electronic component that includes a substrate; and a plurality of conductive layers and a plurality of insulating layers which are alternately laminated on the substrate. The side surface of a predetermined one of the plurality of insulating layers has a recessed part set back from a side surface of the substrate and a projecting part projecting from the recessed part. The recessed part is covered with a first dielectric film made of an inorganic insulating material.
Abstract:
In a thin-film capacitor, an electrode terminal layer is divided into a plurality of parts by a penetration portion, and includes a frame portion as one divided part. The frame portion is disposed along an outer edge of the electrode terminal layer when viewed from the bottom surface side of the electrode terminal layer, and the frame portion can hinder deformation of the electrode terminal layer stretching or warping in a thickness direction or an in-plane direction, whereby such deformation can be prevented. Accordingly, in the thin-film capacitor, the electrode terminal layer is not likely to be deformed and an improvement in strength thereof is achieved.
Abstract:
An electronic component embedded substrate includes: a substrate that includes an insulating layer and has a first principal surface and a second principal surface; an electronic component that is embedded in the substrate and has at least one first terminal, at least one second terminal, and a capacity part; at least one via conductor that are formed in the insulating layer and electrically connected to the second terminal; and an adhesion layer that is in contact with the second terminal on an end face of the second terminal which are close to the second principal surface. The electronic component is laminated with the insulating layer, and adhesion strength between the adhesion layer and the insulating layer is higher than that between the second terminal and the insulating layer.