Abstract:
According to one embodiment of the present disclosure, there is provided a substrate processing apparatus comprising: a supply passage through which fluid supplied to a substrate flows; and a foreign substance detector including a channel forming part forming a portion of the supply passage, a light projector irradiating light to the channel forming part, and a light receiver receiving light emitted from the channel forming part as a result of irradiating light to the channel forming part by the light projector, the foreign substance detector being configured to detect a foreign substance in the fluid based on a signal obtained by the light that the light receiver receives, wherein the light projector and the light receiver in the foreign substance detector are disposed in areas that are not opposite to each other in areas in upper, lower, left, right, front and rear directions of the channel forming part.
Abstract:
A solution supply apparatus for supplying a treatment solution to a treatment solution discharger configured to discharge the treatment solution to a treatment object, the solution supply apparatus includes: a supply pipe line connected to the treatment solution discharger; a filter provided on the supply pipe line and configured to filter the treatment solution to remove foreign substances; and a controller configured to perform a determination of a state of the treatment solution to be supplied to a primary side of the filter and, when the state of the treatment solution is determined to be bad, to output a control signal for restricting supply of the treatment solution to the primary side of the filter.
Abstract:
An apparatus includes: measurement flow passage portions as part of a respective plurality of supply paths of fluids to be supplied to a substrate, the measurement flow passage portions constituting measurement regions for measurement of foreign matter in the fluids, and being disposed so as to form a row with each other; a light irradiating unit configured to form an optical path in one of the flow passage portions, the light irradiating unit being shared by the plurality of flow passage portions; a moving mechanism configured to move the light irradiating unit relatively along a direction of arrangement of the flow passage portions to form the optical path within the flow passage portion selected among the plurality of flow passage portions; a light receiving unit including a light receiving element, the light receiving element receiving light transmitted by the flow passage portion; and a detecting unit configured to detect foreign matter in the fluid on a basis of a signal output from the light receiving element. Consequently, the number of necessary light irradiating units can be reduced, and the apparatus can be miniaturized.
Abstract:
A treatment solution supply method of supplying a treatment solution to a substrate, the method includes the steps of: applying a DC voltage to the treatment solution; detecting a potential difference between two points in the treatment solution in a state where the DC voltage is applied to the treatment solution; and increasing the DC voltage when the detected potential difference is less than a predetermined reference value.
Abstract:
An apparatus transfers a substrate. The apparatus includes: one substrate holder adsorbing and holding the substrate via an adsorption port; a nozzle being provided on a surface of the one substrate holder and allowing gas to pass therethrough; an adsorption flow path being connected to the adsorption port and allowing gas to flow therethrough; and a nozzle flow path being connected to the nozzle and allowing the gas to flow therethrough. The adsorption flow path of at least one of the one substrate holder and another substrate holder and the nozzle flow path are connected to a common gas suction mechanism. A pressure sensor and flow rate sensor are provided for the nozzle flow path. The flow rate of the nozzle flow path is varied according to a distance between an interferer and the one substrate holder and the pressure of the nozzle flow path.
Abstract:
According to one embodiment of the present disclosure, there is provided a substrate processing apparatus comprising: a supply passage through which fluid supplied to a substrate flows; and a foreign substance detector including a channel forming part forming a portion of the supply passage, a light projector irradiating light to the channel forming part, and a light receiver receiving light emitted from the channel forming part as a result of irradiating light to the channel forming part by the light projector, the foreign substance detector being configured to detect a foreign substance in the fluid based on a signal obtained by the light that the light receiver receives, wherein the light projector and the light receiver in the foreign substance detector are disposed in areas that are not opposite to each other in areas in upper, lower, left, right, front and rear directions of the channel forming part.