Abstract:
A deposition mask for forming a thin film pattern having a predetermined shape on a substrate by deposition, includes a resin film that transmits visible light and has an opening pattern penetrating through the resin film and having the same shape and dimension as those of the thin film pattern so as to correspond to a preliminarily determined forming region of the thin film pattern on the substrate.
Abstract:
To provide a method for forming a thin film pattern 14 having a predetermined shape on a surface of a substrate 1 having an electrode formed in advance in a thin film pattern forming region, there are included the steps of: bringing a resin film 2, which transmits visible light, into close contact with the substrate 1; irradiating the thin film pattern forming region 11 on the substrate 1 with laser light L, thereby forming an opening pattern 21 having the same shape as the thin film pattern 14 in the film 2; forming the thin film pattern 14 in the thin film pattern forming region 11 on the substrate 1 through the opening pattern 21 of the film 2; and peeling off the film 2.
Abstract:
A deposition mask for forming a thin film pattern having a predetermined shape on a substrate by deposition, includes a resin film that transmits visible light and has an opening pattern penetrating through the resin film and having the same shape and dimension as those of the thin film pattern so as to correspond to a preliminarily determined forming region of the thin film pattern on the substrate.
Abstract:
An exposure head according to the invention includes: a transparent substrate; a plurality of exposure light sources which is formed in the transparent substrate and emits exposure light; at least one condensing lens which condenses the exposure light from the exposure light sources on the exposure object; an imaging unit which is disposed on the opposite side to the condensing lens with the transparent substrate interposed therebetween and images the exposure object; and a control unit which controls the turning on of the exposure light sources based on image information imaged by the imaging unit. An exposure device according to the invention includes the exposure head according to the invention. By virtue of such a configuration, it is possible to improve alignment precision of the exposure object and to improve exposure precision of the exposure object.
Abstract:
A pulsed laser oscillator includes at least one first electrooptical element that polarizes light according to an applied voltage and a voltage control unit that applies a voltage to the first electrooptical element and controls the voltage. The voltage control unit changes over time a voltage value applied to the first electrooptical element, to control a pulse width of laser light.
Abstract:
The present invention includes: an LED array substrate 1 in which multiple LEDs 3 are arranged in a matrix pattern on a substrate, each of the multiple LEDs emitting light in an ultraviolet to blue wavelength band; multiple fluorescent layers 5 arranged side by side above the multiple LEDs 3 in a manner corresponding to three primary colors of light, each fluorescent layer 5 being configured to perform wavelength conversion by being excited by excitation light emitted from a corresponding LED 3 and by emitting fluorescence having a corresponding color; and an excitation light blocking layer 8 disposed to cover the fluorescent layers 5, the excitation light blocking layer 8 being configured to block the excitation light.
Abstract:
A nondestructive inspection apparatus of a structure includes: an inspection apparatus body 1 provided with an infrared light irradiation unit irradiating a structure 3 to be inspected with heating infrared light, a temperature variation measuring unit measuring a variation in temperature of the structure due to the irradiation with infrared light from the infrared light irradiation unit, a drive-control-and-accumulation unit performing drive control of the infrared light irradiation unit and the temperature variation measuring unit and performing data accumulation; and a self-running mechanism unit 2 enabling the inspection apparatus body 1 to move along the structure 3. The structure 3 is inspected for an internal defect by irradiating the structure 3 with heating infrared light while the apparatus moves along the structure 3 through the use of the self-running mechanism unit 2 and measuring the variation in temperature of the structure 3 due to the irradiation with infrared light.
Abstract:
A substrate mounting method of an electronic component on a wiring substrate includes steps of patterning to form a conductive elastic protrusion on an electrode pad provided on the wiring substrate to correspond to a contact point of the electronic component, forming an adhesive layer made of a photosensitive thermosetting resin on the wiring substrate, lowering viscosity of the adhesive layer by heating the adhesive layer to a first temperature zone, electrically connecting the contact point of the electronic component to the electrode pad on the wiring substrate through the conductive elastic protrusion, under a state where the viscosity of the adhesive layer is lowered, by pressing the electronic component after the electronic component is positioned on the wiring substrate, and fixing the electronic component onto the wiring substrate by heating the adhesive layer to a second temperature zone higher than the first temperature zone to cure the adhesive layer.
Abstract:
Provided is a board connection structure for mounting a micro LED 3 on a wiring board 4. A conductive elastic protrusion 7 is formed by patterning on an electrode pad 6 provided on the wiring board 4 at a position corresponding to a position of a corresponding electrode 5 of the micro LED 3. The elastic protrusion 7 is configured to electrically connect the electrode 5 and the electrode pad 6. This enables mounting of electronic components with a narrow electrode spacing.
Abstract:
An inspection method for multiple LED chips 6 formed on a sapphire substrate 7, comprising: a first step of positioning the sapphire substrate 7 above an inspection wiring board 11 such that each electrode 10 of the multiple LED chips 6 is arranged above a corresponding electrode pad 12 provided on the inspection wiring board 11 at a position corresponding to the electrode 10, and then placing the sapphire substrate 7 on the inspection wiring board 11; a second step of electrically connecting each electrode 10 of the multiple LED chips 6 and the corresponding electrode pad 12 of the inspection wiring board 11; and a third step of supplying a current to the multiple LED chips 6 through the inspection wiring board 11, and determining the quality of the LED chips 6.