Abstract:
An integrated circuit (IC) package includes a chip carrier and a chip mounted to the chip carrier. The chip carrier has a centrally located power delivery region and a peripherally located input-output (I/O) delivery region disposed in partially surrounding relationship to the power delivery region. Power and ground paths are disposed in the power delivery region and I/O signal paths are disposed in the I/O delivery region.
Abstract:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a substrate core by attaching a first dielectric layer to a second conductive layer of a thin film capacitor, and attaching a second dielectric layer to a first conductive layer of the thin film capacitor.
Abstract:
An electronic device includes a material having a first dielectric constant (K) value, and a material having a second dielectric constant (K) value. The first dielectric constant (K) value is lower than the second dielectric constant (K) value. The electronic device also includes input/output connection conductors for transmitting signals to and from a die. The input/output connection conductors are routed through the material of the interposer having the first dielectric constant. The electronic device also includes power connection conductors for delivering power to the die, and ground connection conductors. The power and ground connection conductors are routed through the material having the second dielectric constant.
Abstract:
According to some embodiments, an integrated high-quality printed circuit board is provided. For example, a first integrated circuit device may be mounted on both a first printed circuit board and a second printed circuit board (e.g., a polyimide film having better dielectric characteristics as compared to the first board). A second integrated circuit device may be located remote from the first integrated circuit device and may also be mounted on both the first and second boards.
Abstract:
A thin-film capacitor assembly includes two plates that are accessed through deep and shallow vias. The thin-film capacitor assembly is able to be coupled with a spacer and an interposer. The thin-film capacitor assembly is also able to be stacked with a plurality of thin-film capacitor assemblies. The thin-film capacitor assembly is also part of computing system.
Abstract:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a substrate core by attaching a first dielectric layer to a second conductive layer of a thin film capacitor, and attaching a second dielectric layer to a first conductive layer of the thin film capacitor.
Abstract:
A package for integrated circuits is described. The package has a package substrate with a land side and an opposite die side, a first set of low level signal connectors on the die side to connect to an IC to be carried by the package, and a second set of low level signal connectors on the die side to connect to external components. The package may have power connectors on the land side or a power supply attached to the land side. A heat spreader or cooler may be attached to the die side.
Abstract:
A package substrate for a microelectronic die is described. The package substrate has first terminals in a small area and second terminals in a larger area with conductors connecting the first and second terminals. The conductors are fairly narrow near the first terminals so that they can fit next to one another near the first terminals and before fanning out to the second terminals. The reference plane next to the conductors forms a step so that a first surface of the reference plane is closer to the conductors where they are narrow, and a second portion of the reference plane surrounding the first portion is further from the conductors where they are wider. The capacitance created between a respective conductor and the reference plane remains relatively constant per unit length because the reference plane is closer to the conductor where the conductor is narrow and further from the conductor where the conductor is wider.
Abstract:
Systems and methods of improving computing system interconnects may involve providing an upstream channel and a plurality of downstream channels. A passive matching node can be connected to the upstream channel and the downstream channels, wherein the matching node is configured to couple power between the upstream memory channel and the downstream channels. The matching node may also perform impedance matching as well as isolate two or more signals on the downstream channels from one another. In one example, the matching node includes a power divider/combiner.
Abstract:
A thin-film capacitor assembly includes two plates that are accessed through deep and shallow vias. The thin-film capacitor assembly is able to be coupled with a spacer and an interposer. The thin-film capacitor assembly is also able to be stacked with a plurality of thin-film capacitor assemblies. The thin-film capacitor assembly is also part of computing system.