Abstract:
A bilayer coating for thermal management has a bottom layer composed of aluminum microflakes dispersed in a Nitrile Butadiene Rubber-co-Urea (NBR-U) polymer binder, and a top layer composed of nanoparticle pigments in the NBR-U polymer binder. The top layer has a transmittance larger than 0.7 at IR wavelengths, and the bottom layer has an emissivity less than 0.4 and a reflectance larger than 0.6 in mid-IR wavelengths from 7 to 14 μm.
Abstract:
Disclosed is a powder paint composition of and a method for preparing the same. More particularly, the present invention relates to a powder paint composition including a powder paint prepared by physically attaching metallic particles to a powder resin, which exhibits no separation or aggregation of metallic particles when coated and significantly improves metallic texture owing to orientation of the metallic particles, and a method for preparing the same.
Abstract:
A process for producing multi-layer coatings in light metallic color shades and reducing UV transmission there-through comprising the successive steps of: (1) applying a 10 to 30 μm thick base coat layer to a pre-coated substrate, (2) applying a clear coat layer onto the base coat layer, and (3) jointly curing the base coat and clear coat layers, wherein the base coat layer is applied from an unmodified water-borne metallic base coat having a ratio by weight of pigment to resin solids of 0.3:1 to 0.45:1, wherein the pigment content consists of 90% to 100% by weight of at least one non-leafing aluminum pigment with a platelet thickness over 100 to 500 nm and 0 to 10% by weight of at least one pigment different from aluminum pigments, wherein the pigment(s) different from aluminum pigments are selected in such a way that the multi-layer coating obtained exhibits a brightness L* (according to CIEL*a*b*, DIN 6174), of at least 80 units.
Abstract translation:一种用于制造轻金属色调多层涂层并减少紫外线透射的方法,其包括以下连续步骤:(1)将10至30μm厚的底涂层施加到预涂底物上,(2)涂布 在底涂层上的透明涂层,和(3)共同固化底涂层和透明涂层,其中底涂层由未改性的水性金属底涂层涂覆,颜料与树脂固体的重量比 为0.3:1至0.45:1,其中颜料含量由90%至100%重量的至少一种片状厚度在100至500nm以上至少0至10重量%的非漂浮铝颜料 一种不同于铝颜料的颜料,其中与铝颜料不同的颜料以这样的方式选择,使得所获得的多层涂层呈现亮度L *(根据CIEL * a * b *,DIN 6174), 至少80个单位。
Abstract:
A laminate film includes a guard film layer (A), a clear coating layer (B), and a color coating layer (C). A color coating material, from which the color coating layer (C) is made, contains a shining material (C3) containing at least an aluminum flake. If necessary, the color coating layer further contains an orientation control material (C4).
Abstract:
A process for the production of a multi-layer composite comprising applying a coating layer from a pigmented coating composition A onto the back face of a transparent plastic film and then applying an NIR-opaque coating layer from a pigmented coating composition B, wherein the pigment content of coating composition A consists 50 to 100 wt. % of black pigment with low NIR absorption and 0 to 50 wt. % of further pigment, which is selected in such a way that coating layer A′ exhibits low NIR absorption and that the multi-layer composite exhibits a brightness L* of at most 10 units, wherein the pigment content of coating composition B is either a pigment content PC1 consisting 90 to 100 wt. % of aluminum flake pigment and 0 to 10 wt. % of further pigment, which is selected in such a way that NIR-opaque coating layer B′ exhibits low NIR absorption, or a pigment content PC2 comprising
Abstract:
A double-layer coating composition having improved sparkling effect, and a method of coating the same are provided. The composition includes a first coating, which reinforces the sparkling effect and contains a greater amount of Al particle; and a second coating, which reinforces chromaticity and contains a less amount of Al particle. The method includes applying a first coating on an article and applying a second coating thereon.
Abstract:
A liquid metal composition includes a binder comprising an acrylic resin and a cellulose acetate butyrate, a wax, an organic solvent, and an aluminum pigment comprising PVD aluminum flake. A multi-layered coating system has a flop index of greater than 10 and includes a substrate, a liquid metal layer disposed about the substrate and formed from the liquid metal composition, and a topcoat layer disposed about the liquid metal layer and formed from a topcoat composition. A method of painting the substrate with the liquid metal composition and the topcoat composition to form the multi-layered coating system includes the steps of applying the liquid metal composition onto the substrate at an application percent solids of greater than 10% to form the liquid metal layer, applying the topcoat composition onto the liquid metal layer to form the topcoat layer, and curing the layers to form the multi-layered coating system.
Abstract:
A process for the production of multi-layer coatings comprising the successive steps: 1) applying an 8 to 20 μm thick coating layer from an aqueous coating composition A onto a substrate provided with an EDC primer, 2) applying a 5 to 15 μm thick base coat layer from an aqueous coating composition B onto the previously applied coating layer, 3) applying a clear coat layer onto the base coat layer, 4) jointly curing the three coating layers, wherein coating compositions A and B being different from each other and wherein the coating composition A contains at least one metal platelet pigment having a thickness from 10 to 100 nm in a proportion corresponding to a pigment/resin solids ratio by weight from 0.06:1 to 0.2:1.
Abstract:
A metallic tone glitter paint film is formed by applying sequentially a first base metallic paint, a second base glitter paint in which very small scale-like pigment or very small scale-like pigment and aluminum pigment is compounded and a clear paint, baking and hardening. The metallic paint contains (A) aluminum pigment of average particle diameter D50 from 13 to 40 m and average thickness from 0.5 to 2.5 μm (B) aluminum pigment of average particle diameter D50 from 13 to 40 μm and average thickness from 0.01 to less than 0.5 m and (C) aluminum pigment of average particle diameter D 50 from 4 to less than 13 μm and average thickness from 0.01 to 1.3 μm, and the ratio (A/B) by mass of the solid fractions of the aluminum pigments (A) and (B) is from 10/90 to 90/10.