Abstract:
An electron source includes a planar emission region for generating an electron emission, and a focusing structure for focusing the electron emission into an electron beam.
Abstract:
An electron-beam controller (EBC) capable of controlling the power in an electron-beam is disclosed. The EBC can be implemented with an emitter, an extractor, a current mirror, and an input current having a magnitude responsive to the desired electron beam current. An EBC suited for low-efficiency emitters is also disclosed. A method for controlling the power intensity of an electron-beam over time is also disclosed. The method includes the steps of: (1) providing an emitter at a first voltage, (2) providing a target at a second voltage, (3) introducing an extractor at a controllable third voltage, (4) estimating the actual electron beam energy by sensing the emitter current; and (5) adjusting the third voltage in response to the sensed emitter current.
Abstract:
Cathode ray tube comprising an electron gun which is constructed in such a way that the gas pressure near the electron-emissive layer (30) of the cathode is lower than in the other parts of the tube. This can be achieved by reducing the aperture between the G1 (33) and G2 (36), by providing the G2 (36) with a skirt (43). The wall of the skirt, the G1 and the G2 may also be at least partly coated with a getter (41).
Abstract:
A photocathode structure, which can include an alkali halide, has a protective film on an exterior surface of the photocathode structure. The protective film includes ruthenium. This protective film can be, for example, ruthenium or an alloy of ruthenium and platinum. The protective film can have a thickness from 1 nm to 20 nm. The photocathode structure can be used in an electron beam tool like a scanning electron microscope.
Abstract:
An electron source includes a planar emission region for generating an electron emission, and a focusing structure for focusing the electron emission into an electron beam.
Abstract:
In an electron tube based on a cold cathode, a cesium source (17) containing Csx—Auy or Csx—Sby is provided near the cold cathode (7), preferably in contact with the first grid (9). Cesium is introduced into the source during activation of the tube. The vapor pressure of the cesium compounds is such that proper delivery of cesium is guaranteed throughout the life-time of the cathode.
Abstract:
A thin type image display device for displaying an image by emitting light from a fluorescer with irradiation of electron beams thereto. The device has a cathode panel between a front panel and a back panel in such a manner that a space is existent between the cathode panel and the back panel, wherein through holes for diffusion of getters are formed in the cathode panel to maintain the image quality at the center of a display screen, or the cathode panel is supported by getters to maintain a required pressure, hence attaining a higher image quality even on a large-sized display screen. A gate electrode may be composed of a getter material.
Abstract:
Electron-optical device having two elongate emitting regions arranged symmetrically with respect to a longitudinal axis for producing two electron beams having an elongate cross-section. By means of electron grids, the two beams are focused at the same point of an electron target arranged transversely to the longitudinal axis and having a short central axis and a long central axis. The elongate emitting regions have their smallest cross-section parallel to the scanning direction of a device, cooperating with the electron-optical device, for scanning a target arranged transversely to the longitudinal axis.
Abstract:
An electron has an electron-emitting region, a longitudinal axis and an arrangement of apertured electron grids along the axis. A first grid has an aperture for passing electrons, which aperture is located further outwards with respect to the longitudinal axis than the emitting region. One of the other grids is provided with a shield so as to shield the edge wall of the aperture, if it is located within direct view of the electron-emitting region, from incidence of positive ions.
Abstract:
Flat viewing screen having a matrix of selectively addressable picture elements, including two mutually parallel support plates being vacuum-tightly connected to each other and having sides facing each other, at least one separately addressable electrode disposed on each of the sides, a multiplicity of spacers each being assigned to one picture element for spacing said support plates from each other, each spacer including a pin being integral with and protruding from one of the support plates and a hollow cylinder having an inner surface and a bottom and being integral with and protruding from the other of the support plates, each pin being inserted into one hollow cylinder at a space from the inner surface and contacting the bottom of the hollow cylinder, and a method of producing the same.