Abstract:
A method of determining an overlay error. Measuring an overlay target having process-induced asymmetry. Constructing a model of the target. Modifying the model, e.g., by moving one of the structures to compensate for the asymmetry. Calculating an asymmetry-induced overlay error using the modified model. Determining an overlay error in a production target by subtracting the asymmetry-induced overlay error from a measured overlay error. In one example, the model is modified by varying asymmetry p (n'), p (n'') and the calculating an asymmetry-induced overlay error is repeated for a plurality of scatterometer measurement recipes and the step of determining an overlay error in a production target uses the calculated asymmetry-induced overlay errors to select an optimum scatterometer measurement recipe used to measure the production target.
Abstract:
Methods and systems for inspection of an object include the use of spectroscopic techniques for the detection of unwanted particles on an object's surface, based on the different responses of the unwanted particles as compared with the object to be inspected due to their different materials. Time resolved spectroscopy and/or energy resolved spectroscopy of secondary photon emission from the surface of the object can be used to obtain Raman and photoluminescence spectra. The objects to be inspected can for example be a patterning device as used in a lithographic process, for example a reticle, in which case the presence of metal, metal oxide or organic particles can be detected, for example. The methods and apparatus are highly sensitive, for example, being able to detect small particles (sub 100 nm, particularly sub 50 nm) on the patterned side of an EUV reticle.
Abstract:
Disclosed is a device manufacturing method, and accompanying inspection and lithographic apparatuses. The method comprises measuring on the substrate a property such as asymmetry of a first overlay marker and measuring on the substrate a property such as asymmetry of an alignment marker. In both cases the asymmetry is determined. The position of the alignment marker on the substrate is then determined using an alignment system and the asymmetry information of the alignment marker and the substrate aligned using this measured position. A second overlay marker is then printed on the substrate; and a lateral overlay measured on the substrate of the second overlay marker with respect to the first overlay marker using the determined asymmetry information of the first overlay marker.
Abstract:
A method of determining a position of an imprint template in an imprint lithography apparatus is disclosed. In an embodiment, the method includes illuminating an area of the imprint template in which an alignment mark is expected to be found by scanning an alignment radiation beam over that area, detecting an intensity of radiation reflected or transmitted from the area, and identifying the alignment mark via analysis of the detected intensity.
Abstract:
A method is used to determine focus of a lithographic apparatus used in a lithographic process on a substrate. The lithographic process is used to form at least two periodic structures on the substrate. Each structure has at least one feature that has an asymmetry between opposing side wall angles that varies as a different function of the focus of the lithographic apparatus on the substrate. A spectrum produced by directing a beam of radiation onto the at least two periodic structures is measured and ratios of the asymmetries are determined. The ratios and a relationship between the focus and the side wall asymmetry for each structure is used to determine the focus of the lithographic apparatus on the substrate.
Abstract:
An inspection apparatus is provided for measuring properties of a non-periodic product structure (500'). A radiation source (402) and an image detector (408) provide a spot (S) of radiation on the product structure. The radiation is spatially coherent and has a wavelength less than 50 nm, for example in the range 12-16 nm or 1-2 nm. The image detector is arranged to capture at least one diffraction pattern (606) formed by said radiation after scattering by the product structure. A processor receives the captured pattern and also reference data (612) describing assumed structural features of the product structure. The process uses coherent diffraction imaging (614) to calculate a 3-D image of the structure using the captured diffraction pattern(s) and the reference data. The coherent diffraction imaging may be for example ankylography or ptychography. The calculated image deviates from the nominal structure, and reveals properties such as CD, overlay.
Abstract:
An apparatus to measure the position of a mark, the apparatus including an objective lens to direct radiation on a mark using radiation supplied by an illumination arrangement; an optical arrangement to receive radiation diffracted and specularly reflected by the mark, wherein the optical arrangement is configured to provide a first image and a second image, the first image being formed by coherently adding specularly reflected radiation and positive diffraction order radiation and the second image being formed by coherently adding specularly reflected radiation and negative diffraction order radiation; and a detection arrangement to detect variation in an intensity of radiation of the first and second images and to calculate a position of the mark in a direction of measurement therefrom.
Abstract:
Disclosed are systems and methods for object inspection, in particular for inspection of reticles used in a lithography process. The method includes interferometrically combining a reference radiation beam with a probe radiation beam, and storing their complex field images. The complex field image of one object is then compared with that of a reference object to determine the differences. The systems and methods have particular utility in the inspection of a reticle for defects.
Abstract:
An overlay error between two successive layers produced by a lithographic process on a substrate is determined by using the lithographic process to form at least one periodic structure of a same pitch on each of the layers. One or more overlaid pairs of the periodic structures are formed in parallel, but offset relative to each other. A spectrum, produced by directing a beam of radiation onto the one or more pairs of periodic structures is measured. One or more portions of the spectrum are determined in which the relationship between the offset between the one or more pairs of periodic structures and the resultant variation in measured intensity of the spectrum at the one or more portions is more linear than the relationship outside the one or more portions. The offset between the one or more pairs of periodic structures on the basis of intensity measurements of the spectrum in the one or more portions of the spectrum is determined and used to determine the overlay error.
Abstract:
An overlay measurement apparatus has a polarized light source for illuminating a sample with a polarized light beam and an optical system to capture light that is scattered by the sample. The optical system includes a polarizer for transmitting an orthogonal polarization component that is orthogonal to a polarization direction of the polarized light beam. A detector measures intensity of the orthogonal polarization component. A processing unitise connected to the detector, and is arranged to process the orthogonal polarization component for overlay metrology measurement using asymmetry data derived from the orthogonal polarization component.