Abstract:
A semiconductor package includes a chip, a circuit board and a filling material. The circuit board includes a substrate, a patterned metal layer and a protective layer. A circuit area, a chip-mounting area and a flow-guiding area are defined on a surface of the substrate. The chip is mounted on the chip-mounting area. A flow-guiding member of the patterned metal layer is arranged on the flow-guiding area and includes a hollow portion and flow-guiding grooves which are communicated with the hollow portion and arranged radially. The flow-guiding grooves are provided to allow the protective layer to flow toward the hollow portion, and the hollow portion and the flow-guiding grooves are provided to allow the filling material to flow toward the protective layer such that the filling material can cover the protective layer to improve structural strength of the semiconductor package.
Abstract:
A storage device of the present invention is provided to store flexible circuit packages, each of the flexible circuit packages includes an electronic component and two circuit portions warped at both sides of the electronic component, respectively. The storage device includes a first carrier and a second carrier. The first carrier includes first accommodation elements provided for placement of the flexible circuit packages, and the second carrier includes a first press portion and a second press portion. As the second carrier is placed on the first carrier, the first and second press portions are provided to press the two circuit portions warped upwardly toward the second carrier so as to reduce the warpage of the two circuit portions.
Abstract:
A semiconductor manufacturing method includes providing a carrier; forming a first photoresist layer; forming plural core portions; removing the first photoresist layer; forming a second photoresist layer; forming a plurality of connection portions, each of the plurality of connection portions includes a first connection layer and a second connection layer and connects to each of the core portions to form a hybrid bump, wherein each of the first connection layers comprises a base portion, a projecting portion and an accommodating space, each base portion comprises an upper surface, each projecting portion is protruded to the upper surface and located on top of each core portion, each accommodating space is located outside each projecting portion, the second connection layers cover the projecting portions and the upper surfaces, and the accommodating spaces are filled by the second connection layers; removing the second photoresist layer to reveal the hybrid bumps.
Abstract:
A semiconductor package process includes the following steps, providing a first substrate having a first metal bump, the first metal bump comprises a joint portion having a first softening point; providing a second substrate having a second metal bump having a top surface, a lateral surface and a second softening point, wherein the first softening point is smaller than the second softening point; performing a heating procedure to make the joint portion of the first metal bump become a softened state; and laminating the first substrate on the second substrate to make the second metal bump embedded into the joint portion in the softened state to make the top surface and the lateral surface of the at least one second metal bump being clad extendedly by compressing the joint portion in the softened state.
Abstract:
A semiconductor manufacturing method includes providing a carrier; forming a first photoresist layer; forming plural core portions; removing the first photoresist layer; forming a second photoresist layer; forming a plurality of connection portions, each of the plurality of connection portions includes a first connection layer and a second connection layer and connects to each of the core portions to form a hybrid bump, wherein each of the first connection layers comprises a base portion, a projecting portion and an accommodating space, each base portion comprises an upper surface, each projecting portion is protruded to the upper surface and located on top of each core portion, each accommodating space is located outside each projecting portion, the second connection layers cover the projecting portions and the upper surfaces, and the accommodating spaces are filled by the second connection layers; removing the second photoresist layer to reveal the hybrid bumps.
Abstract:
A wafer includes chips, a scribe lane, a metal layer and an inhibitor made of a nonconductive material. The metal layer is provided on the scribe lane and the chip located next to the scribe lane. The inhibitor covers the scribe lane and the chip next to the scribe line and includes a first removed part and an inhibition part which are located above a second removed part and a residual part of the metal layer, respectively. The scribe lane, the first and second removed parts are removed, and the inhibition part and the residual part are retained on each of the chips after a wafer cutting process. The inhibitor is provided to prevent the residual part of the metal layer from being lifted up or generating a metal burr during the wafer cutting process.
Abstract:
A storage device of the present invention is provided to store flexible circuit packages, each of the flexible circuit packages includes an electronic component and two circuit portions warped at both sides of the electronic component, respectively. The storage device includes a first carrier and a second carrier. The first carrier includes first accommodation elements provided for placement of the flexible circuit packages, and the second carrier includes a first press portion and a second press portion. As the second carrier is placed on the first carrier, the first and second press portions are provided to press the two circuit portions warped upwardly toward the second carrier so as to reduce the warpage of the two circuit portions.
Abstract:
A semiconductor package structure includes a first substrate, a second substrate and an encapsulant. The first substrate comprises a plurality of first bumps and a plurality of first solder layers. Each of the first solder layers is formed on each of the first bumps and comprises a cone-shaped slot having an inner surface. The second substrate comprises a plurality of second bumps and a plurality of second solder layers. Each of the second solder layers is formed on each of the second bumps and comprises an outer surface. Each of the second solder layers is a cone-shaped body. The second solder layer couples to the first solder layer and is accommodated within the first solder layer. The inner surface of the cone-shaped slot contacts with the outer surface of the second solder layer. The encapsulant is formed between the first substrate and the second substrate.
Abstract:
A semiconductor manufacturing method includes providing a carrier; forming a first photoresist layer; forming plural core portions; removing the first photoresist layer; forming a second photoresist layer; forming a plurality of connection portions, each of the plurality of connection portions includes a first connection layer and a second connection layer and connects to each of the core portions to form a hybrid bump, wherein each of the first connection layers comprises a base portion, a projecting portion and an accommodating space, each base portion comprises an upper surface, each projecting portion is protruded to the upper surface and located on top of each core portion, each accommodating space is located outside each projecting portion, the second connection layers cover the projecting portions and the upper surfaces, and the accommodating spaces are filled by the second connection layers; removing the second photoresist layer to reveal the hybrid bumps.
Abstract:
A semiconductor package structure includes a first substrate, a second substrate and an encapsulant. The first substrate comprises a plurality of first bumps and a plurality of first solder layers. Each of the first solder layers is formed on each of the first bumps and comprises a cone-shaped slot having an inner surface. The second substrate comprises a plurality of second bumps and a plurality of second solder layers. Each of the second solder layers is formed on each of the second bumps and comprises an outer surface. Each of the second solder layers is a cone-shaped body. The second solder layer couples to the first solder layer and is accommodated within the first solder layer. The inner surface of the cone-shaped slot contacts with the outer surface of the second solder layer. The encapsulant is formed between the first substrate and the second substrate.